YN
O 0 ICAT |

‘ ' ' Aplicadas y Tecnologia

Notas de Curso
Introduccién al desarrollo Web con NodeJS y
Bootstrap

Muro Colaborativo

M. en C. Manuel Ignacio Castillo Lopez
M. en D.M. Ana Libia Eslava Cervantes
Dra. Selene Marisol Martinez Ramirez

Dr. Gustavo De la Cruz Martinez

23 de agosto del 2024

Tipo de Proyecto

Desarrollo

Financiamiento (PAPIME)

Titulo: Introduccién al desarrollo Web con NodeJS y Bootstrap

Subtitulo: Muro Colaborativo

Autores:
M. en C. Manuel Ignacio Castillo Lépez, Facultad de Ciencias
M. en D.M. Ana Libia Eslava Cervantes, ICAT
Dra. Selene Marisol Martinez Ramirez, ICAT

Dr. Gustavo De la Cruz Martinez, ICAT

Resumen

Las presentes notas de curso desarrollan el contenido del Curso de Introduccion al
desarrollo Web con NodedS y Bootstrap impartido en el ICAT como Actividad de
Educacién Continua. La estructura del curso es de “arriba a abajo”, los primeros temas
son generales respecto al desarrollo de aplicaciones Web, conforme progresan
presentan contenido mas especifico hasta los ultimos temas donde se presenta el uso
de las tecnologias basadas en JavaScript y CSS, NodedS y Bootstrap, para la
construccion de aplicaciones. Se asume que el lector tiene conocimientos basicos de
disefio de software y su implementacion (particularmente con lenguajes Orientados a
Objetos). El documento se organiza de la siguiente manera: el primer capitulo presenta
una introduccién general a las aplicaciones Web, el segundo presenta herramientas
frecuentemente utilizadas para el desarrollo de aplicaciones Web, el tercer capitulo
expone actividades de procesos de software para el desarrollo de aplicaciones Web. El
cuarto capitulo introduce el lenguaje de programacién JavaScript y los entornos de
ejecucion con los que se emplea en la Web, el quinto capitulo trata sobre el desarrollo
de servidores Web para aplicaciones y el sexto el desarrollo de vistas dinamicas para

navegadores Web.

indice

INtrOdUCCION... ... ———— 10
1. Servidores y funciones remotas (back-end)...........cccccceiiiiiiiiiiiiii 11
1.1. Rol de un Servidor en una Red de computadoras.............ccoevvveeeiiiiiiinennnnnnnn. 11
1.2. World Wide Web — Una aplicacion de las redes IP...........cccocceeiiiiiiiiieiceneen, 11
1.3. Aplicaciones Web (Web apps).......couuuurimiiiiiiiee e 12
1.4. Disefo y arquitectura general de una aplicacion Web.................cccooiinenns 13
1.5. FUNCIONES rEMOLAS.coi i 14
1.5.1. Verbos HTTP/HTTPS ...t 16

1.5.2. Cédigos de respuesta HTTP/HTTPS........ooomiiiiiiiiiee e, 17
1.5.2.1. Cbdigos informativos 1XX.......oooiiiiiiiiiiieeeeeceeeeee e 17

1.5.2.2. COdigos de éXito 2XX......iiiiiiiiieeiiee e e 17

1.5.2.3. Cddigos de redireccionamiento 3XX..........ccooovviiriiiiiciiiiicee e, 18

1.5.2.4. Cédigos de error del cliente 4XX........coooviiiiiiiiiiccceeeee e, 18

1.5.2.5. Codigos de error del servidor 5XX ... 18

2. Arquitectura Modelo — Vista — Controlador (MVC).........ccoooiiiiiieiiieeee e 18
2.1. Estructura y disefio de software.............cccceeeeeiiiiiiiiiiiiie e 18
2.2. ArquIteCtura MV C.........ooorii e e 19

3. Navegadores Web y componentes generales del contenido Web (front-end)....... 20
3.1. Navegadores Web como plataforma de ejecucion...............ccooeeccinvnnnnnneee. 20
3.2. Document Object Model (DOM).........coooiiiiiieceee e 21
3.3. HOJas d€ €Stl0. ... 21
3.4. Entorno de ejecucion JavaScCript.........cooooiiiiiiiiiiiiie e 22

4. Entornos de desarrollo integrados (IDE).........ccccoiiiiiiiiiiiiieeeeee e 22
4.1. Introduccion @ 10S IDE..........i e 22
4.2. IDEs para el desarrollo de aplicaciones Web...........cccooovviiiiiiiiii 23

5. Herramientas de trabajo colaborativo y repositorios de software.......................... 23

5.1. Repositorios de SOftWare.............uueiiiiiiiii e 23
5.2. Desarrollo de software €n eqUIPO..........uuueiiiiiiiii e 24
S TR T € SRS 25
5.3.1. Inicializando un repositorio con git............ccuveiiiiiiiiiiiieee e, 25
5.3.2. Obteniendo un repositorio existente.............cccceeevviiiiiiiiicccccce e, 26
5.3.3. Guardando estados del proyecto. Creando versiones...........ccccccceennn... 26
5.3.4. Recorriendo la historia de cambios............ccccoiviiiiiiiiii 27

En la mayoria de proyectos basta con emplear los primeros ocho digitos de la firma
hexadecimal del commit deseado, solo en proyectos significativamente grandes
puede ser necesario usar mas digitos para distinguir univocamente cada cambio del

proyecto (Git arroja un error cuando se provee una firma que coincide con otra)

(Chacon y Straub, 2020).........eeeiiiiiiiii e 28

5.3.5. Ramas, creando subversiones de trabajo...........cccceeeeeeiiiiiiiieieieeiiin. 28

5.3.6. Empujando al servidor remoto.........cccoooiiiiiiiiiiiiiie 30

5.3.7. Desarrollo paralelo e integraciones...............cooooiiiiiiiiiiiiiiieeeeeeen 31
5.3.7.1. MezcCla de ramas............ccoiiiummmiiiiiiiee e 31

Ejemplo de mezcla de ramas...........oooeeeiiiiiiii e 32

5.3.7.2. Rebase de ramas...........ccoooiiiiiiiiiiiiiiieceee e 32

5.3.7.3. Resolviendo conflictos de integracion...............ccccooviiiiiiiiiiiiinnnnn. 33

5.3.8. Etiquetas y [anzamientos..........coouuiiiiiiiiiii 34

6. Desarrollo iterativo-incremental................oooiiiiiiii 35
6.1. Metodologias de desarrollo de software............ccccooieeeiiiiiiiiiin 35
6.2. Desarrollo de software iterativo-incremental..............ccccooiiiis 35
6.3. Metodologias AGIIES.c.ovieeeeeeeeeeeeee et 35

7. Desarrollo guiado POr PrUEDAS.covviiiiieeeeeee e e e 36
7.1. Estrategias de validacion de software..............cccccoiiiiiiiiiis 36

7.2. Automatizacion en procesos de software.............cccooooiiiiiiiiiiiicciee e 37

Ejemplo de automatizacién de pruebas de un servidor Web..........ccccccooiiiiiiiiiiicceenn, 37
7.3. Desarrollo guiado por Pruebas...........ceeeeeeiiiiiiiiiieeeee e 37

8. Desarrollo centrado €n €l USUAIIO............uuiiiiiiiiiiiiiiieii e 39
8.1. Origenes del Disefno de INteracCion..........cccceeeeieeiiiiiiieieeiccee e 39
8.2. Disefio Centrado €n €l USUArio..........cuuuiiiiiiiiiiiiiiiiiieeeeeeeeee e 39

G TG T O TP T F- T 1 oo U 39
8.4. Proceso tipico de DCU.......ooiiiiiiiiiiiee e 40

9. Programacion defenSiVa.............ooouiiiiiiiiiiieiee e 41
9.1. Manejo de entradas de datos...........ueeeiiiiiiiiiiiiiii e 41
9.2. Programacion defenSiva............oouiiiiiiiiiiiiii e 41
10. Calidad de COAIGO.......ccoeiiiiiieeeee e e e e e e e e e e e e e e eeeeraaaaaas 42
10.1. Prioridades en procesos AGIIES.c.coveeeeeeeeieeeee e e 42
10.2. Calidad de COAIGO.uuuuiiiiiiiiiiiiiiee et e e e 43
025728 I 0o To [o T 3 114 o o] [J SRR 43

11. Introduccion @ JAVaSCripPt.........oovuimiiiiiiiiie e e 45
11.1. Netscape y la especificacion ECMASCHIPL..........ccooriiiiiiiiiciccieee e 45
11.2. Caracteristicas de JavaScript........ccooo i 46
12. JavaScript — Sintaxis y Operadores basicos.............coooviiiiiiiiiiiieeeeeeee 48
12.1. Declaracion de variables...............ooooiiiiiiiiii e 48
L2 T R | PP PP PP PRPPP 49
L2 1 SRS 49
12,03, CONSE. et 50

12.2. Tipos de datos ¥ SUS OPEradOres.ceeeivieiiiiiiieeeeiie e e e e e e e et eaeens 50
L R @ o] 11 (o 1= TSP 50
12,210, ACCESO. ...ttt a e e 50

Ejemplo de uso del operador de aCCeSO0...........uuuuuiuuieiiiiieiiiiiiiieeieeeeeeeeeeeeeeeeen 50

Ejemplo de uso de un objeto como arreglo asociativo.............ccccevevvvvecennnnnn. 51

L I N 4 (=Te | (o1 TS 51
Ejemplos de manipulacion de arreglos..........ccceiveiieiieeieiiciii e 52

12.2.1.3. FUNCIONES.....cciiiiiiiiieeie ettt 52
12.2.1.4. Quitando miembros de un objeto...........cccoriiiiiiiiiiii 53
Ejemplo de remocion de miembros de un objeto.........ccoooeeeiiiiiiiiiiiiineeeneeees 53

12.2.2. TIPOS NUMEIICOS. ...ceeiereeuiinniaaaeeeeeeeeeeeeeeeeeeeaeessnnnnaaaaaaaeaaaaeeaeeeeeensnnnnns 53
12.2.3. Cadenas de Caracteres...........ccooviiiiiiii i 53
12.2.4. BOOICANOS. ... 54
12.2.5. UNAEfiNEA......coiii e 54
12.2.6. Preguntando por el tipo de un valor...............cceiiiiiiiiiiiieeieeeeeeeeies 54
12.3. Valores de verdad............oooo i 54
12.3.1. Operadores I0QICOS.uuuuuuiiieeei e eee e e e e e e e e e e e e e e e e eeaaanaas 54
12.4. PASO A€ VAIOIES.......uiiiiiiiiiie et 55
Ejemplo de manipulacién de un valor apuntado por dos variables diferentes................. 55
12.5. Operadores de control de flujO..........uueiiiiiiiiie i 55
12.5.1. Control de flujo secuencial..............ccoooviiiiiiiiiiiicicie e 55
Ejemplo de bloque SWItCH........cooiiiiieee e 56
12.5.2. CICIOS. ... ettt 56
Ejemplo de iteracidn de estructuras con FOR............cccvviiviiiiiiiiiiiieeeeeeeeeeeeeeeeee e 57
12.6. Precedencia de OPEradores........ccooieeeiieeiieeeeeeiiiiceee s e e e e e e e e e 57
13. Manejo de errores en JavaSCript.........cccccuriiiiiiiiiiiieeee e 58
G T I o= T o Ted o] 1= PP 58
Ejemplo de disparo de UNa@ €XCEPCION.eeiieiiiiiiiiieieee e et e e e e e e e e e e e e e e e aaane 59
13.2. BloQUES try — CatCRN....eeeeeeeeee e 59
Ejemplo de mecanismo de recuperacion para una excepcion especifica.............ccvuvueee. 60

14.

15.

16.

17.

Funciones de primer orden y anOnimas...........ccouuuiiiieiiiiiiiie e e e e e 60

14.1. Declaracion de fuNCIONES...........oocuiiiiiiiiiii e 60
Ejemplo de funcion con pardmetros opcCionales...............ccoeeiiiiiiiiiiieeieeiiieeee e 61
Ejemplo de funcion de aridad arbitraria..............cccooiiiii 62
14.2. FUNCIONES @NONIMAS. ...ttt e e e e e e e e eeeeaaeeas 62
Ejemplo de funcion @nOnima............ooooiiiiiiiiie e 62
14.3. Funciones de Primer OFAEN...........oiiiiiiiiii et e 64
14.4. AICANCES Y CEIMAUUIAS. .. .uuuuiiie e e i e e e e e eee ettt e e e e e e e e e e e e e e as 64
Ejemplo de funcidn que produce fUNCIONES...........covviiiiiiiiiiiiiiiiieeeeeeeee e, 65
Convenciones de codificacion de JavaScript.........ccccoeeeiiiiiiiiiiiccceee e 66
15.1. JavaScript Object Notation — JSON............oooimiiiiiii e 66
15.2. Estilo de codificacion preferido en JavaScript...........cccoooviieiicccccee. 67
15.2.1. Nomenclatura de archivos y directorios..............cccccuuviiiiiiiieieiinnennennn. 67
15.2.2. Nomenclatura de identificadores en JavaScript..........ccccceeeveeiinennnnn. 67
15.2.3. Sangria (indentacion) y separacién de bloques de cddigo................. 67
15.2.4. COMENTAIIOS. ...ttt e e e e e e e e e e e e e 69
Ejemplo de uso de comentarios multi-linea...............oooeeiiiiiiii 70
15.2.5. Paréntesis, corchetes y bloques de cOdigo............cccovvvviiviiiiiiiiiinnnn. 70
15.2.6. SENIENCIAS. ...ttt a e 71
Inspectores de cddigo y pruebas automaticas de software................oooeeeeiiee 71
16.1. Actividades de control de calidad en procesos Agiles..........cccooveeeeeeeeeeenn. 71
16.2. Inspectores de cddigo automaALtiCOS..........evvvvviiiiiiiiiieeeeeeece 72
16.3. Pruebas automaticas de software..............cccociiiiiiiiiiiiii 72

Servicios y bibliotecas que integran a NodeJS como plataforma de ejecucion...73

17.1. Introduccion a NOAEUS..........oe e 73
17.1.1. Configuracion del entorno de ejecucion..................ovvvciiiiiieeieeeeeeee, 73
17.1.2. Caracteristicas de NOdEJS..........ooouiiiei e 74

18.

19.

17.2. Diseflando con el Ciclo de BVentos. ..o 74

17.3. MOAUIOS. ...ttt enee e e e 76
Ejemplo de mOAdulo con NOAEJS.........coo i 76
17.3.1. Importando dependencCias............oooeeeiiiiiiiiiiiiieee e 76
17.4. Node Package Manager — NPM..........oiiiiiiiiiiiie e 77
A S T 5 q o (== TSSO 77
17.4.2. Creando un repositorio de proyecto de Aplicacién Web..................... 77
17.4.3. Separando dependencias del producto de las de desarrollo.............. 79
17.5. Bibliotecas y servicios de NOdeJS............uiiiiiiiiiiiiiie e 80
17.5.1. EMISOres de @VENTOS.ccoouuuiiiiiiiiiiiiieeeee e 80
17.5.2. Promesas ECMASCIIPE VO........coooeiiiieieeceeee e 81
Definicion de rutas (eNd-pOiNtS)...........ouumiiiiiiiiiiiiiiieeeeeeeeeeee e 82
18.1. Configuracion general de una aplicacion Web con NodedS........................ 82
18.2. Definicion de ruteadores..........oooiiiiiiiiieeieeeeeeeeee e 83
Ejemplo de ruteador general Con EXPress...... ..o 84
18.2.1. Parametros en la ruta...........ccccuvmiiiiiiiiiiic 85
Ejemplo de definicidon de rutas parametrizadas con EXpress.........cccccceeeeviiiivieeennnnn. 85
18.3. Construccion de respuestas de mensajes HTTP.........vvvvviviiiiiii, 86
Ejemplo de generacion de respuesta a una peticion Web con Express.......ccccooeeveeeeees 86
18.4. Definicion de respuestas de €ITOr...........uuiiiieei e 87
Ejemplo de manejo de errores al procesar peticiones con middlewares......................... 88
18.5. WEDSOCKELS. ...t 88
Ejemplo de ruteador WebSockets para una vista Web (en navegador).............ccccccu....... 90
Definicion de Controladores y Modelos.............ooooviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 91
191, MOEIOS.....eeeeeeeeeeee e 91
Ejemplo de un modelo Simple de USUAIIO..........oouuiiiiiiiee e 91
19.2. CONIOIAUOIES.ciiiiiiiee ettt e e e e e e e e e e e e 92

Ejemplo de un controlador SIMPIE...... ... e e eeeeas 92

19.3. MIAAIEWAIE.......eiiiiiiiieeee ettt e e e e e e e e e e e e e e e e 93
Ejemplo simplificado de middleware que comprueba sesiones de usuario..................... 94
20. EIemMentos DOM.......cooio it 94
20.1. Representacion de HTML/XHTML en tiempo de ejecucion........................ 94
20.2. Manipulacion de vistas Web en tiempo de ejecucion................cccccuvvvinnnene. 96
Ejemplo de manipulacion de una vista con JavaScript en el navegador......................... 96
Ejemplo de manipulaciéon de nodos DOM con JavaScript en el navegador..................... 97
20.3. Personalizando la presentacion de vistas Web............cccooovviiiiiiiiiieee, 98
21. Bibliotecas para el desarrollo de vistas Web.............cccoooiiiiiiiiii 100
21.1. Bibliotecas para vistas del lado del cliente.............cccooovviiiiiiiiiiiiiieeecnenn, 100
21.2. JQuery — JavaScript para manipulacion de DOM.............cccccoeeeiiviiiieennnnns 100
21.2.1. Importando JQuery como dependencia de las vistas Web............... 101
21.2.2. Selectores — Objetos JQUENY...........uuumiiiiiiiiiiiiiieeeeeee e 102
Ejemplo de manipulacién de presentacion de vistas con JQuery.........ccccccoeeveeen. 104

21.3. Bibliotecas para vistas del lado del servidor...............ooooiiiiiiiiiiicccccien. 104
21.4. Plantillas de JavaScript embebido...............uuuiiiiiiieiiiiiiii 105
21.4.1. Definiendo vistas en archivos .€jS.........ccccoeviiiiiiiiiiiiiiiiiee e, 105
EJemPpPlo de VISt ©]S.....cuiiiiiiiiiieiiee s 106
21.4.2. Creando plantillas para las vistas.............ccccoooviiiiiiiiicccccce e 107
Ejemplo de plantilla para crear un pie de pagina estandarizado...........cccccccccceeenn... 107
21.4.3. Creando Vistas diNAMICAS.........ccuuiiiiiiiiiiiiiiiee e 108
Ejemplo de vista dinamica con contenido que depende del estado de un modelo.. 108

22, PetiCIONES AJAX ... ittt a e e e e e e e e 109
22.1. JavaScript asincrono CoN XML..........uuiiiiiiiiiiee e 109
22.2. Conexiones abiertas y Peticiones discretas.............ccococcciiiiiiiiiiieeeeeenenn. 109
22.3. Usando AJAX a través de JQUETY.........coooiiiiiiiiiiiiiiieiiceeeeee e 110

Ejemplo de uso de peticiones AJAX con JQuery para manejar formularios................... 111

23. Bootstrap y hojas de estilo CSS.........ooiiiiiiiii e 113
23.1. Jerarquia de aplicaciéon de selectores de estilos............cooovvveiiiiiiiiinn.n. 113
23.1.1. Incluyendo hojas de estilo en las vistas...........cccceeeiiiiiiiinns 114

23.2. BOOSIIAD. .. i 114
23.2.1. Integrando Bootstrap en una aplicacion NodeJdS.............ccccceeeeeennnn. 115
23.2.2. Personalizando vistas con Bootstrap............ccevuuuiiciiiiiieiiiiieeeeeeee 116

Ejemplo de uso de Bootstrap para uniformar y estilizar la presentacion de vistas... 116
Agradecimientos.........ccoiiiiiiiieiee e —————— 117

Referencias Bibliograficas...........cooeiiiiiiiii 118

Introduccioén
El grupo ESIE ha desarrollado varios proyectos en el marco de los proyectos del Aula
del Futuro y la Red de Aulas del Futuro, algunos de los cuales se basan en tecnologias
Web. Estos proyectos son desarrollados con estudiantes, principalmente como parte de
sus actividades de Servicio Social y egreso de licenciatura. En particular, el proyecto del
Muro Colaborativo ha desarrollado una aplicacion Web que permite a profesores crear
espacios virtuales en los que otros usuarios puedan colaborar en el desarrollo,
organizacion o presentacion de ideas por medio de un tablero similar a un collage como

se muestra en la figura 1.

Isabel Dominguez Trejo PIN 81917

Definiciones basicas

Yeconocimiento de
os materiales.

Introduccion de la
coordenada tiempo

o Pelimitaciones de
y delimitacion de I
) .) ; . i o onas
Etlmologla de EStl’G\tlgrOFla Caracteristicas de unidades. Andlisis | -
: itoestratigraficas.
- los estra_tols). - de cuencas Relaciones entre
Definicién y caracterisicas Composicién

. unidades
ippipios defla Estratigrafia . o
Femnfminpipi 9 de los estratos m}neralpglca S sestratigraficas
Dimensién (todos
per puestas,(

los estratos son L
ntinuidad o

Danna Almazan !H@FOS) Q f— scontinuidad).

7. Continuidad Nivel simple de nesis de las

litologia homogénea stintas _umdades.
o gradacional ‘denacién vertical

ST — ““™=" |as unidades.
Martin e mllm—‘l "Ifaﬂ?ﬁ-'g

1. Horizontalidad
original 2.

Superposicién (de
lo mas viejo a lo

mas joven) lateral: se busca un

estrato de forma
lateral
Definicién y origen de la estratificacion

worrelacion de

unidades.
—

es aquella

disposicion de los
estratos en la que
podemos apreciar

en un afloramientc &

La laminacién se

M desarrolla cuando

las particulas de
grano fino se

; depositan en

ambiente de baja

eneraia

Figura 1. Instancia del Muro Colaborative coma herramienta didactica.

El Muro Colaborativo ha evolucionado continuamente buscando ofrecer herramientas y
modos de uso competitivos como herramienta didactica. Buscando mejorar el ritmo de
trabajo y reducir el esfuerzo que deben invertir los estudiantes para familiarizarse con el
proyecto, el grupo ESIE ha decidido crear un curso introductorio a las tecnologias en las

que se basa el Muro Colaborativo.

10

Este documento presenta las notas correspondientes al contenido de dicho curso.
Presenta conceptos y practicas basicas para el desarrollo de aplicaciones Web con
NodedJS y Bootstrap. La presentacion del contenido sigue el esquema “arriba hacia
abajo”, comenzando por los aspectos mas generales del desarrollo Web, concretando
los temas hasta presentar el uso de las herramientas de trabajo y codificacion para el

desarrollo de esta clase de aplicaciones.

El contenido de este curso asume que los estudiantes poseen habilidades basicas de
programacion y modelado de procesos, asi como conocimientos basicos en torno a
disefio y documentacion de software con algun lenguaje funcional u orientado a objetos

(Programacion Orientada a Objetos, POO).
1. Servidores y funciones remotas (back-end)

1.1. Rol de un Servidor en una Red de computadoras
En el contexto de redes de computadoras un servidor es un integrante de la red que se
encarga de manejar peticiones realizadas por otros miembros de la red. A estos

miembros solicitantes se les llama clientes (Kurose y Ross, 2013).

Existen muchas clases de servidores. Una taxonomia comun es considerar diferentes
aplicaciones de las redes de computadoras, en particular del Internet. Una de las
principales aplicaciones del Internet es la Web. En la jerga comun, Internet y Web se
usan de forma indiferente pese a que la Web es un subconjunto del Internet: no todos
los mensajes en el Internet pueden ser interpretados por un cliente o servidor Web, pero

todas las peticiones Web son parte del Internet (Kurose y Ross, 2013).

1.2. World Wide Web — Una aplicacion de las redes IP

Los mensajes Web se caracterizan por emplear el protocolo HTTP, o su variante que
admite la transferencia de datos segura mediante llaves publicas y privadas HTTPS.
Bajo este protocolo dos miembros de la Web se comunican mediante mensajes cuyo
formato se apega a la especificacion de HTTP. Esta especificacion establece

claramente cdmo son los mensajes que espera recibir un servidor y como son los

11

mensajes con los que responde. De esta manera cualquier cliente o servidor

desarrollados de manera independiente pueden interpretar los mensajes de otros

clientes y servidores sin importar su origen (Kurose y Ross, 2013).

1.3.

Aplicaciones Web (Web apps)

Por su parte una aplicacion Web es una aplicacion distribuida que se compone por las

siguientes partes (pero no se limita a solo estas) (Kurose y Ross, 2013):

Aplicacién de ejemplo de NodeJS | CIDW

Interfaces de usuario o Vistas que se representan como Documentos HTML.

HTML es una lenguaje de marcado similar a XML, en el que la informacion del

documento se organiza mediante etiquetas que modelan un arbol de datos: la

etiqueta raiz del documento representa la raiz del arbol, cada etiqueta anidada

dentro de otra es un sub-arbol de la etiqueta en que se anida. La figura 2

muestra un documento HTML y su representacion como vista.

o Las Vistas suelen incluir hojas de estilo, que incluyen informacion sobre como

deben visualizarse los elementos definidos en el Documento HTML.

Alta de usuarios

1D:
Nombre:

Apellido:

Aplicacién de ejemplo de Node]S CIDW

Paginas de interés:

Pdgina Canvas del
curso
Documentacién de ejs

Documentacion de
Express

Documentacién de
Socket.io (WebSockets)

<html lang="es">

== 30

¥ <head>
<meta http-equiv="content-type" content="text/html; charset=utf-g">
<meta name="author" centent="Manuel 'Nachintoch' Castillo">
<meta name="mail:" content="manuel_castillo_cc@ciencias.unam.mx">
<meta name="description" content="Portal primcipal">
<meta name="created" content="19/03/23">
<meta name="keywords" content="index,portal,ejemplo,node.js, express,ejs">
<link rel="stylesheet" type="text/css" href="/css/bootstrap.min.css">
<link rel="stylesheet" type="text/css" href="/css/comunes.css">
<script src="/js/jquery-3.6.4.min.js"></script>
<title=Portal - Aplicacién de ejemplo de NodelS CIDW</title>
</head>
v <body>
<hl-Aplicacién de ejemplo de NodelS | CIDW</hl>
<h2>Alta de usuarios</h2>
v <forn id="datos usuario” action="#" method="post">
¥ <div class="form-group">
<label for="identificador usr">ID:</label>
<input id="identificador usr® type="number” name="identificador usr* class="form-control">
</div>
¥ <div class="form-group">
<label for="nombre usr">Nombre:</label>
<input id="nombre usr* type="text" name="nombre usr® class="form-control">
</div>
¥<div class="form-group">
<label for="apellido usr"=Apellido:</label>
<input id="apellido usr" type="text" name="apellido usr" class="form-control">
</div>
<button type="submit" name="enviar btn" class="btn btn-success"> Registrar </button=
</form>
> <footers> — </footer>
<script src="/js/bootstrap.min.js"s></script>
F<scripts e </scripts
</body>
</html>

Figura 2. A la izquierda aparece una vista Web vy a la derecha su fuente en

HTML. Mote que algunos de los elementos HTML estan colapsados.

12

o También suelen incluir scripts que permiten interactuar con el contenido del
Documento HTML, de manera que pueda hacerse dinamico e interactivo.

e Un Servidor Web que utiliza rutas y distintos tipos de mensajes HTTP para

accionar las distintas funcionalidades que ofrece.

1.4. Diseino y arquitectura general de una aplicacién Web

La naturaleza distribuida de una aplicacion Web requiere que el disefiador considere
con atencién especial a qué parte o componente de la aplicacion le debe corresponder
cada responsabilidad. Para esto existen varios patrones de disefio para la Web, estos
suelen ser implementados por medio de marcos de trabajo (frameworks) y bibliotecas

para esta clase de aplicaciones (Bass et al., 2013; Fowler, 2003).

Un patron ampliamente utilizado para el desarrollo de aplicaciones Web es la
arquitectura Modelo-Vista-Controlador (MVC), en la que se contemplan 3 roles

primarios (Fowler, 2003):
e Modelos que representan la informacién que maneja la aplicacién.

Usualmente estos modelos son clases (en el sentido de POO) que representan

colecciones (tablas) definidas en una base de datos.

e Las Vistas son Interfaces Graficas de Usuario que permiten interactuar con los

componentes que conforman la aplicacion.

e Por ultimo los Controladores son componentes que ofrecen servicios o funciones
que usualmente son explotados por medio de las Vistas, su ejecucion suele

modificar Modelos.

De esta manera en una aplicacion Web los Modelos y Controladores se distribuyen
entre los componentes remotos de la aplicacién que ofrecen servicios a los usuarios,
como un sistema de correo electrénico, una base de datos, o el mismo servidor de la

aplicacién. Estos componentes remotos (usualmente llamados back-end) pueden ser

13

distribuidos y/o replicados en multiples sistemas anfitriones (Fowler, 2003; Kurose y
Ross, 2013).

Por su parte las Vistas se ejecutan del lado del cliente, en el navegador Web que se
utilice para usar la aplicaciéon, a este entorno se le llama front-end (Fowler, 2003;
Kurose y Ross, 2013).

1.5. Funciones remotas

Las funciones mas significativas de un servidor Web se concentran en sus
Controladores. Sin embargo los controladores no suelen estar expuestos a la Web por
si mismos, sino que sus funciones son solicitadas por componentes del servidor que si

estan expuestos a los mensajes de los clientes (Fowler, 2003; Kurose y Ross, 2013).

Usualmente se utiliza un ruteador, un programa que se encarga de decidir qué
componente del servidor corresponde a cada peticion Web. Recordemos que la Web se
basa en el protocolo HTTP/HTTPS para intercambiar informacion, estas peticiones

tienen el siguiente formato (Kurose y Ross, 2013):

e Linea de peticion. <verbo HTTP> <URL> <version HTTP>.

La linea de peticion describe la informacion mas basica del intercambio de datos
via HTTP.

o El verbo HTTP describe la accién que deseamos se lleve a cabo por parte del

servidor, como puede ser subir contenido nuevo o borrar contenido existente.

o La URL indica al servidor el recurso al que queremos tener acceso o sobre el

que queremos que realice alguna accién.

o La version de HTTP/HTTPS le indica al servidor la version del protocolo que
soporta el cliente (y la version del protocolo bajo la que espera recibir una

respuesta).

e Lineas de encabezado. Incluyen meta-informacién respecto a la peticion. Entre

otros puede incluir: si se desea mantener la conexion abierta, el lenguaje en el
14

que se espera recibir el contenido (inglés, espafol, aleman...), el navegador y

sistema operativo que ejecuta el cliente.

e Cuerpo de la entidad. Segmento opcional de un mensaje HTTP. Incluye
recursos asociados a la peticion, como puede ser una cookie, texto introducido
en un formulario o un archivo. No todas las consultas HTTP necesitan de este
segmento y por eso es opcional. Considere por ejemplo una peticion para
obtener un portal 0 home page de una pagina Web por primera vez, usualmente

esta peticidon no incluye informacion de sesién ni enviar un formulario.

La respuesta de un mensaje HTTP tiene un formato muy similar al mensaje de peticion,
salvo la denominacién de la primera linea “estado” que posee una estructura similar a la
linea de peticidn. En lugar de la URL del recurso solicitado aparece un codigo de
respuesta. Estos son cddigos numéricos entre 100 y 599; cada centena tiene un
significado estandar y nos ayudan a determinar la manera en que el servidor procesa la

peticion (o si no pudo hacerlo) (Kurose y Ross, 2013).

Las figuras 3 y 4 muestran mensajes HTTP de ejemplo, la figura 3 muestra un mensaje

de peticion y 4 muestra su respuesta.

- |Hypertext Transfer Protocol

» GET / HTTR/1.1\r%n
Host: 34.222.0.89:3000%\r\n
User-Agent: Mozillas5.0 (X11; Linux xB6_64; rv:109.0) Gecko/20100101 Firefox/115.@%r\n
Accept: text/html,applications/xhtml+xml, applicationsxml;q=0.9,imagesavif, image/webp, */*;q=0.8%r\n
Accept-Language: es-MX,es;q=0.8,en-US;q=0.5,en;g=0.3%r\n
Accept-Encoding: gzip, deflate’rin
Connection: keep-alive‘rin

b Cookie: io=zdVhOTcIRrGO@BswAFgv.rin
Upgrade-Insecure-Requests: 1\ri\n
Pragma: no-cache’\rin
Cache-Control: no-cache’ryn
\rsn

Figura 3. Mensaje HTTP de peticidn.

~ Hypertext Transfer Protocol

b HTTP/1.1 200 OK\r\n
X-Powered-By: Expressirin
Content-Type: text/html; charset=utf-8\rin

r Content-Length: 1676%r\n
ETag: W/"68c-BkVsQhnhSt3gHwW3Sg2YKM7TnxXY8"\r\n
Date: Wed, 13 Mar 2024 00:25:58 GMTArin
Connection: keep-aliwve’rin
\rin

Figura 4. Mensaje HTTP de respuesta.
15

1.5.1.

Verbos HTTP/HTTPS
GET - Indica que se desea obtener un recurso, obtener la “pagina Web” en la
URL de la peticion (Kurose y Ross, 2013).

POST - También indica que se desea obtener un recurso, pero el contenido

depende de informacion provista por el usuario (Kurose y Ross, 2013).

HEAD - De forma similar a GET, indica que se desea obtener un recurso, pero la
respuesta a una peticion HEAD unicamente contiene el encabezado del mensaje
HTTP/HTTPS, dejando de lado el recurso solicitado. Suele usarse con propdsitos

de documentacion o depuracion (Kurose y Ross, 2013).

PUT - Solicita la publicacion de un recurso en el servidor, usualmente alojandolo

en la URL indicada en la peticion (Kurose y Ross, 2013).

DELETE - Solicita la eliminacién de un recurso en el servidor (Kurose y Ross,
2013).

Las peticiones GET suelen ser las mas empleadas y aunque no especifican la entrega

de datos por parte del cliente, es posible enviar datos al servidor por medio de la URL,

ya que en su forma general (figura 5) permiten agregar fragmentos de informacioén o

consultas que incluyen una serie de claves y sus valores asociados (Kurose y Ross,
2013).

http

(A fwww.example.com | /ruta/recurso.ext| ?var0=valorO&vari=valori | #etigueta

b Fragmento

A 4 Parametros de la peticion

" Ruta del recurso solicitado

_l/‘ Anfitricn (Mombre de dominio o direccién IP)

T Esquema (protocalo) Figura 5. Estructura de un Localizador de Recursos Uniforme (LIRL).

16

Se envian datos en una peticibn GET cuando el recurso solicitado varia dependiendo
de los datos del usuario. No confunda esto con la intencion de una peticion POST,
estas indican que el recurso deseado depende o requiere de informacién del usuario
para poder responder (cobmo en un inicio de sesién). Cuando se envian datos en una
peticion GET usualmente se hace para afinar la busqueda o distincidon de aspectos
especificos del recurso deseado (como son los parametros de un buscador Web)
(Kurose y Ross, 2013).

También es importante considerar la diferencia entre POST y PUT. PUT no se asocia
con la obtencién de un recurso sino con la publicaciéon de uno, por lo que PUT resulta
inapropiado para subir informacion a un servidor esperando una respuesta especifica.
Por esto el envio de formularios suele realizarse con el verbo POST, pues el usuario
espera ver una vista de confirmacion. Los resultados de una peticion PUT pueden
reflejarse en la misma vista en la que el usuario solicitoé la publicacién (Kurose y Ross,
2013).

1.5.2. Coddigos de respuesta HTTP/HTTPS

1.5.2.1. Cdbdigos informativos 1XX

Se usan para notificar al cliente de algun evento por parte del servidor que requiere una
accion del cliente. Por ejemplo, ignorar una respuesta (100) o cambiar el protocolo
HTTP por HTTPS (101, también puede solicitar cambiar por otro protocolo diferente)
(Kurose y Ross, 2013).

1.5.2.2. Cébdigos de éxito 2XX

Indican que la peticion es procesada con éxito. Puede indicar que la accion ha
concluido exitosamente (200), que ha sido aceptada y esta encolada para ocurrir en el
futuro (201), o que el servidor espera que el cliente vacie los datos provistos en la vista
que solicité la consulta (205), en general indica que la peticién es atendida (Kurose y
Ross, 2013).

17

1.5.2.3. Cébdigos de redireccionamiento 3XX
Se usan para enviar las peticiones a una URL diferente, usualmente como resultado de
migrar funciones en el servidor. Esto permite que los clientes que utilicen las URL

antiguas aun puedan acceder a las funciones del servidor (Kurose y Ross, 2013).

1.5.2.4. Cébdigos de error del cliente 4XX

Indica que el servidor no puede procesar la consulta del cliente. Por ejemplo puede
indicar que el mensaje de consulta HTTP estad mal-formado (400), que se intenta
acceder a un recurso protegido (401), que se intenta obtener un recurso que no existe
(404), o bien que el servidor cuenta con una tetera y se niega a preparar café con ella
(418) (Kurose y Ross, 2013).

1.5.2.5. Cobdigos de error del servidor 5XX

Indica que al procesar la consulta el servidor encontré un problema y no puede
continuar. Puede indicar un error genérico (500), que el recurso solicitado corresponde
con una funcién contemplada en la especificacion del servidor pero que aun no ha sido
implementada (501) o que el servidor estd funcionando pero no disponible (503)
(Kurose y Ross, 2013).

2. Arquitectura Modelo — Vista — Controlador (MVC)

2.1. Estructuray diseno de software

Al desarrollar software se debe considerar que no opera de manera aislada sino que
debe contar con interfaces que permitan proporcionar datos de entrada y/o conocer los
resultados de su operacion. Incluso los sistemas digitales mas simples requieren
interfaces de entrada y salida, un reloj digital por ejemplo necesita una interfaz de
entrada que permita ajustar la hora y una interfaz de salida que permita conocer la hora

actual.

El disefio de estas interfaces establece mecanismos para proveer las entradas que
necesita el sistema y poder recuperar los resultados de su operacion de manera que los

usuarios u otros mecanismos puedan interactuar con el software sin introducir

18

restricciones adicionales a la operacion (Clements et al., 2011; Fowler, 2003; Martin y
Martin, 2007).

Para alcanzar estos objetivos contamos con patrones y recomendaciones para el
disefio de interfaces de software. La organizacion de responsabilidades tiene un rol
positivo en el disefio de interfaces de software por lo que se agrupan componentes
cohesivamente, las partes del software se agrupan por funcionalidades vy
responsabilidades similares o directamente relacionadas (Clements et al., 2011; Fowler,
2003; Martin y Martin, 2007).

Esta organizacion ayuda a identificar la manera en que los distintos componentes del
software interactuan. Estudiar y refinar este diseno puede ayudar a identificar riesgos
que pueden ocurrir durante la implementacion y considerar cambios al disefio o
contemplar medidas en caso de que se presente alguna situacion de riesgo. También
ayuda a identificar aspectos del disefio que son propensos a cambios y considerar
puntos de flexibilidad que permitan cambiar o extender los componentes necesarios
(Clements et al., 2011; Fowler, 2003; Martin y Martin, 2007).

2.2. Arquitectura MVC - . contraer
En el capitulo anterior se presento la arquitectura MVC

| |

| |

con sus tres componentes, los cuales aparecen en la | |
figura 6 (Fowler, 2003): |
|

e Modelos que representan la informacion que Mode!

maneja el software.

Figura & Modela de la arquitectura MVC

e Controladores que atienden las acciones del (Fowler, 2003)

usuario y actualizan las Vistas y Modelos conforme

a los resultados de las operaciones.
e \Vistas que le permiten al usuario interactuar con el software.

Esta arquitectura separa la presentacion del modelo y el controlador de la vista. La

separacion de la presentacion del modelo es una de las heuristicas fundamentales del
19

disefio de software puesto que tienen propésitos muy diferentes, separarlos ayuda a
disefiar mecanismos aptos para los diferentes propdsitos que persiguen los

componentes de la presentacion y los componentes del modelo (Fowler, 2003).

Por su parte los usuarios necesitan acceder a informacién consistente del modelo sin
importar la vista desde la que se les presente esa informacion. La separacion de estos
elementos también permite disefar multiples vistas que permiten visualizar los mismos
modelos. Otro uso de esta estrategia de disefio es ofrecer varios tipos de interfaces:
podemos tener interfaces basadas en Web, en lineas de comando, por medio de API
(del inglés Application Programming Interface, Interfaz de Programacion de
Aplicaciones), etc. Esto implica una dependencia: la presentacién (vista) depende del

modelo, pero el modelo es independiente de la presentacion (Fowler, 2003).

El comportamiento de componentes no graficos es distinto del comportamiento de
componentes graficos, por lo que otra ventaja de separar la presentacion del modelo es
que pueden ser probados de forma separada: los modelos pueden ser probados
mediante revisiones de cdédigo o mediante pruebas automatizadas, mientras que la
presentacion puede ser probada mediante enfoques centrados en el usuario (Fowler,
2003).

3. Navegadores Web y componentes generales del contenido Web (front-end)

3.1. Navegadores Web como plataforma de ejecucion

Los navegadores Web ofrecen diversos servicios para una interaccion enriquecida
mediante tres componentes primarios que procesan y despliegan contenido al usuario,
permitiendo también modificar el contenido en cualquier momento para habilitar vistas

dinamicas ademas de interactivas (Dean, 2019).

Estos tres componentes son: el Modelo de Objetos del Documento (DOM por sus siglas
en inglés), hojas de estilo en cascada (CSS por sus siglas en inglés) y un entorno de
ejecucion JavaScript (Dean, 2019). Estos componentes se describen en las siguientes

secciones.

20

3.2. Document Object Model (DOM)

Es un API que representa el contenido de un documento HTML. Puede interpretarse
como un arbol (como estructura de datos) que tiene como nodo raiz la etiqueta html y
dos subarboles: header y body (Dean, 2019). La figura 7 muestra un ejemplo de la

representacion DOM de un documento HTML.

<html lang="es">

¥ <head=
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="author” content="Manuel 'Nachintoch' Castillo">

<meta name="mail:" content="manuel castillo cc@ciencias.unam.mx"> Ty
<meta name="description" content="Partal principal"=> '.\\ Fitred /I
<meta name="created" content="19/083/23"> _____—-"_'-—_____
<meta name="keywords" content="index,portal,ejemplo,node.js,express,ejs"> - —— T
R —— PR
<link rel="stylesheet" type="text/css" href="/css/bootstrap.min.css"> I" haed \I If bty)
<link rel="stylesheet" type="text/css" href="/css/comunes.css"> '\ L)
<script src="/js/jquery-3.6.4.min.js"></script> | ____.__._:_-.r\-_"?‘fz.-__-:._____
<title=Portal - Aplicacién de ejemplo de NodeJs CIDW</title> . ___f"’f/"; ____.--"._'..-"' II.-' ., "“---,,:_'---.____
<gh:ad> r_,—--.'\"-_- - /_L..\ _L-\ (_,_L . — --"_--:-_.;_ e L, e _____
a :hf:.nplica[ién de ejemplo de NodelS | CIDW</hl> Ix_lm..-:l ! E] ﬂ)\ E “ srnpt l”(-ﬁu"‘ I Ifm (n2 _z‘l |\. LI ll I'r[w":f / I'k. W‘" I I Bop .\I
<hz>Alta de usuarios</h2> —l_ Ll_/
v<form id="datos usuario" action="#" method="post"> S - .
¥ <div class="form-group"> | #tend '| | ot l| |\-;:1 r-)] :
<label for="identificador_usr">ID:</label> —— _
<input id="identificador usr" type="number" name="identificader usr" class="form-control"> J__ J_
</div> - ra E I "
v<div class="form-group"> [div [dr.'“' kd" ?.l | bution ?.l
<label for="nombre_usr">Nombre:</label> \-7\—/ *-7_/ oy
<input id="nombre usr" type="text" name="nombre usr" class="form-control"> ., S/ s rd ™,
</div> {_,_ii___'l |"'._\H .__,.;::I.._\. I__,.L..I '| I(.—f—..l - |_\;\-~'| o '|
v<div class="ferm-group"> | labsl | nput) Lpalll i J | mput |1;
<label for="apellido_usr">Apellido:</label> - Sy e A e e
<input id="apellido usr" type="text" name="apellido usr" class="form-control">) b I
/i . ‘ . (aet) (" et) { et)
<button type="submit" name="enviar_btn" class="btn btn-success"> Registrar </button> e e - p A
</form>
» <footer> - </footer>
<script src="/js/bootstrap.min.js"></script>
P <script> = </script> . .
</|:ody>p e Figura 7. Ejemplo de representacidn DOM de un documento HTRL.

</html>

La especificacion DOM permite que diferentes navegadores puedan interpretar y

mostrar cualquier documento htm/ que se le presente (Dean, 2019).

3.3. Hojas de estilo

Las hojas de estilo contienen una serie de reglas que especifican la presentacion de los
elementos DOM como partes de una vista. Estas reglas se agrupan en clases que
pueden definirse con un nombre arbitrario, por el tipo de nodo DOM sobre el que deben
tener efecto (como p, div 0 h1) o por identificador del nodo DOM sobre el que deben
tener efecto. También es posible crear clases que se deben aplicar sobre varias clases

de elementos DOM con determinadas propiedades (Dean, 2019).

21

3.4. Entorno de ejecucién JavaScript

La representacion DOM del documento HTML vy las clases de estilo que tienen efecto
sobre ellas pueden ser alteradas de forma dinamica con JavaScript, un lenguaje
multi-paradigma de tipos débiles con funciones de primera clase que hereda amplias
caracteristicas de lenguajes funcionales. Pese a su nombre JavaScript es mas similar a

Lisp y Scheme que a Java o C (Crockford, 2008).

Existen entornos que envuelven a JavaScript para desarrollar vistas dinamicas para la
Web, estos entornos producen archivos JavaScript que los navegadores pueden
ejecutar. Existen muchas criticas hacia JavaScript, su lanzamiento original se considera
prematuro y existen muchas caracteristicas negativas en el lenguaje, como la existencia
de dos operadores de equivalencia (uno de los cuales tiene un comportamiento no
reflexivo ni transitivo), comparte un espacio de memoria global para todos los scripts en
ejecucion (lo que puede resultar en conflictos entre ellos), la capacidad de terminar
sentencias con final de linea o punto y coma (puede generar inconsistencias) o la

existencia de multiples valores vacios (undefined y null) (Crockford, 2008).

Pese a los problemas y criticas en torno a JavaScript, su rapida adopcién desde su
lanzamiento y su uso continuo son evidencia de su utilidad. Mientras que otras
tecnologias como los Java Applets o Adobe Flash llegaron a poseer una enorme
relevancia para el desarrollo Web, JavaScript es una de las pocas que sigue vigente y
es el lenguaje universal para el desarrollo de interfaces Web dinamicas (Crockford,
2008).

4. Entornos de desarrollo integrados (IDE)

4.1. Introduccién a los IDE

Los Entornos de Desarrollo Integrados o IDE por sus siglas en inglés (Integrated
Development Environment) son herramientas de desarrollo de software que integran
una serie de funciones y servicios para la codificacion de software. Su funcién mas
basica es la de un editor de texto, normalmente integran: un compilador, una consola de

comandos y/o REPL (Bucle de Lectura-Evaluacién-Impresion; Read-Evaluate-Print
22

Loop), un depurador (debugger), un manejador de control de versiones y herramientas

de refactorizacion (DelBono, 2016; Sommerville, 2011).

La mayoria de los IDE ofrecen capacidades de extension mediante las que pueden
aumentar sus capacidades, como el soporte de plataformas de desarrollo adicionales,
gestion de maquinas virtuales, gestion de dependencias del proyecto, herramientas de
calidad de codigo, herramientas de Integracion Continua y Lanzamiento Continuo; entre

otras (Sommerville, 2011).

4.2. IDEs para el desarrollo de aplicaciones Web
Para el desarrollo Web se recomienda utilizar un IDE con soporte explicito para HTML,

CSS y Javascript, como son (DelBono, 2016):

e Visual Studio Code — IDE ligero desarrollado por Microsoft. Estda basado en
Electron, que es una plataforma de desarrollo de aplicaciones con NodeJS, por
lo que VS Code esta predispuesto para el desarrollo de aplicaciones en esta

plataforma.

https://code.visualstudio.com/

e WebStorm — IDE que permite automatizar las tareas de codificacion desarrollado
por JetBrains, al igual que IntelliJ (IDE para Java y Kotlin), en el que esta basado
Android Studio, por lo que WebStorm comparte las funcionalidades e interfaces
de estos IDE pero con soporte especializado para las tecnologias Web, esta
orientado al desarrollo de aplicaciones Web y soporta JavaScript de manera

nativa.

https://www.jetbrains.com/webstorm/

5. Herramientas de trabajo colaborativo y repositorios de software

5.1. Repositorios de software
Un repositorio de software es un compendio de artefactos de software. A su vez los

artefactos de software son aquellos que forman parte de un proyecto de software, como

23

https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/

es el cddigo fuente, documentacion, métricas, registros de incidentes, registros de un

manejador de versiones, etc (Luzgin y Kholod, 2020).

Existen varias herramientas en linea para gestionar repositorios de software que
permiten acceso constante y remoto a los miembros del equipo de trabajo, ademas de
incorporar diversas herramientas comunmente utilizadas principalmente en
metodologias Agiles, como herramientas para Integracion Continua y Lanzamiento
Continuo, o asignacion de roles y niveles de acceso para los miembros del equipo
(Sommerville, 2011).

5.2. Desarrollo de software en equipo

Los repositorios de software en linea impulsan el desarrollo de software en equipo.
Permiten que varios desarrolladores construyan un producto de software sin necesidad
de tener que compartir el mismo entorno de desarrollo, el mismo espacio fisico o de

tiempo (Sommerville, 2011).

Desarrollar software en equipo permite fragmentar las responsabilidades y repartirlas
entre varias personas. Esto permite a los miembros ocupar distintos roles conforme a
sus preferencias y experiencia. En metodologias Agiles se contempla que un mismo
integrante del equipo puede ejercer varios roles, esto fomenta la comunicacién entre
integrantes del equipo puesto que participaran en varios de sus aspectos en lugar de

especializarse en alguno de ellos (Martin y Martin, 2007).

En estas metodologias también se prefiere que el equipo de trabajo sea lo mas
pequeno posible, lo que depende del tipo de proyecto, sus requerimientos y los
recursos con los que cuente. Se busca que los miembros del equipo ejerzan roles en
los que tengan experiencia suficiente (o0 en los que puedan ser capacitados

oportunamente) y en los que se sientan comodos ejerciendo (Martin y Martin, 2007).

El equipo debe tener comunicacion constante. Se debe dar seguimiento puntual al
progreso y problemas. Ademas debe haber canales de comunicacién permanentes
(Martin y Martin, 2007).

24

5.3. Git

Git es uno de los manejadores de versiones mas populares. La funcionalidad basica
para descubrir cambios de Git fue disefiada por Linus Torvalds, autor original del kernel
Linux (Chacon y Straub, 2020; Torvalds, 2005a, 2005b, 2005c, 2005d).

5.3.1. Inicializando un repositorio con git

El comando para inicializar un repositorio de git es (Chacon y Straub, 2020):
git init

Al inicializar el repositorio también suele crearse un archivo oculto llamado .gitignore.
Este archivo puede contener nombres y patrones de archivos y directorios que son

ignorados por git (Chacon y Straub, 2020).

Para terminar la preparacién del repositorio local se define la ruta de al menos un
repositorio remoto. Esto puede hacerse de muchas formas diferentes, lo mas usual es
dar de alta un proyecto en un servicio de hospedaje de proyectos basados en Git (como
Github, Gitlab, Bitbucket, entre otros) (Chacon y Straub, 2020).

Una vez que cuente con la URL del repositorio remoto, en cualquier directorio del

repositorio local se usa el siguiente comando para definir el remoto:

git remote add origin <URL del repositorio remoto>

Este comando contiene varias partes (Chacon y Straub, 2020):
e git - Comando principal de git.
e remote - Indica que la operacion esta relacionada a un repositorio remoto.
e add - Indica que se agrega un repositorio remoto.

e origin - Es el nombre del repositorio remoto. No es necesario que se llame
origin, usualmente el unico o principal repositorio remoto se suele llamar asi. Es
una buena practica seguir convenciones y modismos ampliamente aceptados o
establecidos por las organizaciones a las que pertenecen los equipos de trabajo.

25

5.3.2. Obteniendo un repositorio existente
Si el proyecto ya ha sido creado anteriormente (sea por uno de nuestros comparneros
de equipo o por uno mismo), es posible clonarlo en uno o mas entornos de trabajo

usando el siguiente comando (Chacon y Straub, 2020):

git clone <URL del repositorio remoto> <directorio para el proyecto>

5.3.3. Guardando estados del proyecto. Creando versiones

Una vez que se han realizado cambios en el repositorio se debe hacer un commit. Un
commit es como hacer una fotografia del estado actual del proyecto. Se identifican con
un numero hexadecimal generado automaticamente y un comentario que el

desarrollador debe introducir manualmente (Chacon y Straub, 2020).

Antes de hacer un commit es recomendado conocer los cambios del repositorio para
evitar introducir cambios indeseados. Para conocer los cambios desde el ultimo commit

se usa el comando (Chacon y Straub, 2020):
git status

Esto muestra una lista de archivos con seguimiento y sin seguimiento para el siguiente
commit. Unicamente los cambios en archivos con seguimiento se agregan al commit.

Para seguir los cambios de un archivo se emplea el comando (Chacon y Straub, 2020):
git add <ruta a un archivo o directorio a seguir>

También es posible seguir todos los cambios en un solo comando (excluyendo los

archivos ignorados segun .gitignore) (Chacon y Straub, 2020):
git add .

Puede usar git status para verificar que ha seguido todos los cambios que se desean
agregar al siguiente commit. Si detecta que ha seguido algun archivo que no desea

incluir en el commit, puede quitarle el seguimiento con (Chacon y Straub, 2020):

git rm --cached <archivo a quitar seguimiento>

26

Una vez que se verifique que el estado del repositorio local es adecuado para hacer

commit, se aplica el commit con el comando (Chacon y Straub, 2020):
git commit -m “<mensaje del commit>”

El mensaje del commit debe ser corto y concreto, indicando en pocas palabras los
cambios que se incluyen en el commit. No es recomendado acumular demasiados
cambios entre commits. Si en algun momento desea volver a alguna version anterior y
los cambios entre cada commit son demasiados, puede tener dificultades para
recuperar el estado deseado del repositorio. Las integraciones de cambios también
pueden ser mas complejas cuando los commits varian mucho entre si (Chacon y
Straub, 2020).

5.3.4. Recorriendo la historia de cambios

Es posible recorrer la historia de cambios en el proyecto, para ello se usa el historico de
commits realizados. Es posible emplear el identificador de un commit del que se quiere
recuperar el estado del repositorio. Los servicios de hospedaje de repositorios de
software suelen ofrecer interfaces graficas para conocer el histérico de los repositorios
que hospedan (figura 8). También es posible consultar el historico del repositorio

usando el comando (Chacon y Straub, 2020):

git log

27

commit bc654074cd18e48b2bb63dd67fda33f1ff2c8027 (->
Author: nachintoch aciencias.unam.mx>
Date: Fri Feb 23 13:06:07 2024 -0600

V5.0 -Merge branch 'nachintoch/hotf

Manuel Ignacio Castillo

2 Feb 23, 2024 1:07pm GMT-0600
Resuelto problema que no deja crear ni probar actividades °
commit e50ff25dabaf0a87e4616acchd693181bf566018 Pjsgqglbranch ‘nachintoch/hotfix' into

Merge: a55cclc b4b4f26
Author: Maria Fernanda < dciencias.unam.mx>
Date: Mon Sep 11 12:04:47 2023 -0600

Resuelto problema que no deja crear ni
probar actividades

See merge request
esie/muro-colaborativo!22

Merge branch 'dimoc666/AlumnoPresencial-EnlaceYEditar' into 'v5.0'

Se agrego intento de compartir enlace y de editar publicacion para alul ¥ Cambios para el bug de POST e
b rved

See merge request esie/muro-colaborativo!l5 :l; Cambiando forma de agregar co

commit b4bdf268a895459cc64edc5d18dc2f588ea7e99b (origin/dimoc666/AlumnoPre 5B Cambiando el color a la colum
Author: dimoc666 @ciencias.unam.mx>

Date: Wed Aug 16 23:48:12 2023 -0600

Wi Ag regando funcionalidad para

JM Implementando guardado en la
Se agrego intento de compartir enlace y de editar publicacion para alu

[dinocess/Elinin. g DSE agrego funcion de eliminar
commit a55cc1c910e9fff12717a9768ab6384b0dd7bcab (origin/) l [i1] se agregaron modificaciones n
Merge: 8b1296d 8c20ce8 T %@ Cambi N te d K
Author: Maria Fernanda Jciencias.unam.mx> sy Lamplos para fa parte de soc

Figura 8. A la izquierda aparece al histdrico de cambios como lo muasira al camando “git log®.
A la derecha aparece el historico de cambios como o muesira un repositorio Git con interfaz grafica.

Una vez que cuente con el identificador del commit al que desea volver, se recupera
con (Chacon y Straub, 2020):

git checkout <identificador del commit>

En la mayoria de proyectos basta con emplear los primeros ocho digitos de la firma
hexadecimal del commit deseado, solo en proyectos significativamente grandes puede
ser necesario usar mas digitos para distinguir univocamente cada cambio del proyecto
(Git arroja un error cuando se provee una firma que coincide con otra) (Chacon y
Straub, 2020).

5.3.5. Ramas, creando subversiones de trabajo

Los commits representan estados del proyecto pero son una forma limitada de manejo
de versiones. Una forma mas flexible de manejar versiones son las ramas. En Git todo
repositorio tiene al menos una rama (usualmente llamada main, antes master). Todo
commit pertenece a una rama, las ramas del proyecto crecen conforme evoluciona la
historia de cambios (Chacon y Straub, 2020).

Para listar las ramas existentes en el proyecto se usa el comando (Chacon y Straub,

2020):
28

git branch
Para listar ramas tanto locales como remotas el comando es (Chacon y Straub, 2020):
git branch -a

En ocasiones el repositorio local no tendra informacién de ramas nuevas dadas de alta

en el remoto. Para conocerlas se debe usar el comando (Chacon y Straub, 2020):
git fetch

Para obtener los cambios de la version remota de la rama en que estemos trabajando
se usa (Chacon y Straub, 2020):

git pull

Para cambiar a alguna de las ramas existentes en el repositorio se emplea el comando
(Chacon y Straub, 2020):

git checkout <nombre rama>

Para crear una rama nueva a partir del commit en el que esté el repositorio se hace
(Chacon y Straub, 2020):

git checkout -b <nombre rama>

Este comando crea una rama con el nombre que se le indique y ademas mueve el
repositorio a ella. Si se crea una rama cuando tenemos cambios no seguidos en git,
entonces la rama nueva arrastra los cambios, mas tarde deberan ser registrados con
git add (Chacon y Straub, 2020).

Es importante tomar en cuenta que hay una convencion para nombrar ramas de trabajo.
El nombre de una rama se forma con el nombre de usuario del desarrollador quien la
crea, una diagonal y después el nombre de la rama. Por ejemplo (Chacon y Straub,
2020):

git checkout -b <nombre de usuario>/<nombre rama>

29

Usualmente las ramas se usan para desarrollar caracteristicas especificas de un
producto de software. Por ejemplo, si se trata de una aplicacién calculadora, puede
haber una rama con el codigo de las funciones aritméticas, otra con las funciones
cientificas y otra mas para la interfaz de usuario. El nombre de la rama debe describir la

funcionalidad que implementa, por ejemplo:
nachintoch/funciones-cientificas

Note que el nombre de la rama no usa caracteres especiales (como acentos). Como en
nombres de archivo, aunque es posible usarlos, es mejor evitar condiciones que

pueden propiciar conflictos de codificacion.

5.3.6. Empujando al servidor remoto

Las ramas se sincronizan entre el repositorio local y repositorios remotos. Para
identificarse entre ellas se usan flujos (streams). El nombre de la rama local y su
equivalente remota no tiene porque ser el mismo aunque casi siempre es asi por
conveniencia y practicidad. Para empujar una rama vy reflejar su estado en el servidor
remoto debe indicar el flujo (stream) al menos la primera vez que se publican los

cambios de dicha rama (Chacon y Straub, 2020).
git push -u <nombre repositorio remoto> <nombre rama remota>

El modificador -u indica que lo que sigue es la configuracién del up-stream (flujo de
subida), se indica el remoto al que se desea empujar y la rama destino en el repositorio
remoto. Si no existe la rama de destino se crea en ese momento (Chacon y Straub,
2020).

Si los cambios a empujar tienen como destino el mismo repositorio remoto no es
necesario cambiar la rama destino y/o el servidor remoto puede omitir el modificador -u
y sus parametros, push usara la ultima configuracion establecida (Chacon y Straub,
2020).

git push

30

Si al navegar por la historia de cambios (commits) desea empujar un commit que no es
el siguiente consecutivo del ultimo empujado (por ejemplo para recuperar una version
anterior del producto), es necesario incluir el modificador --force (0 su equivalente
abreviado -f) para confirmar que en efecto queremos sobrescribir el historial de la rama

en cuestion (Chacon y Straub, 2020).
git push -f

--force ayuda a reducir riesgos de alterar el proyecto por accidente. Algunos servicios
de hospedaje de repositorios Git ofrecen la capacidad de impedir forzar cambios en el
historial de ciertas ramas, ya que la historia del proyecto solo deberia sobreescribirse

en situaciones excepcionales (Chacon y Straub, 2020).

5.3.7. Desarrollo paralelo e integraciones

El desarrollo de software suele ocurrir en equipo. Por convencién cada desarrollador
tiene su propia rama en la que acumula cambios especificos a una caracteristica del
producto. Otras ramas mas generales pueden acumular la suma de cambios
correspondientes a multiples caracteristicas y otras acumulan el total de cambios que
representan versiones candidatas a lanzamiento del producto. Cuando cada integrante
del equipo termina sus cambios debe integrarlos a la rama que acumulan los resultados
de la caracteristica correspondiente. Hay dos técnicas para integrar cambios usando

Git: mezcla (merge) y rebase (rebase) (Chacon y Straub, 2020).

5.3.7.1. Mezcla de ramas

Para mezclar dos ramas se usa el comando:
git merge <rama objetivo>

Esto mezcla la rama actual con la rama que se indique en el comando (Chacon y
Straub, 2020).

Al mezclar dos ramas Git busca las diferencias entre los archivos de la rama actual

contra los archivos de la rama destino y mezcla los cambios (Chacon y Straub, 2020).

31

Ejemplo de mezcla de ramas

Suponga que la rama original es rama1, y la rama que derivd de rama1 y que desea
mezclar es ramaZ2. No es posible integrar dos ramas que no comparten una historia de
cambios, pero tampoco es indispensable que la rama a integrar sea un descendiente

directo, puede haber multiples ramas intermedias en la jerarquia de su descendencia.

Suponga que los archivos contenidos en estas dos ramas son los que aparecen en la
tabla 1:

ramal ramaz2
archivoA arhivoA
archivoB archivoB
archivoC archivoC
<No existe en rama1> archivoD

Tabla 1. Archivos en las ramas hipotéticas rama1y ramaZ2.

Suponga que el archivoA solo ha sido modificado en la rama1, el archivoB no ha sido
modificado en ninguna de las dos ramas, el archivoC solo ha sido modificado en la

ramaZ2 y el archivoD es nuevo y solo existe en la ramaZ2.

Al terminar de trabajar en ramaZ2 y hacer desde rama1
git merge rama2

El resultado es que en rama1 los archivos A y B no cambian, el archivoC toma los

cambios de ramaZ2 y el archivoD es creado en la ramaf.

5.3.7.2. Rebase de ramas
El rebase es muy similar a la mezcla con la unica diferencia de que en lugar de aplicar
unicamente los cambios del ultimo commit de la rama indicada a la rama actual, aplica

todos los commits de la rama indicada desde que se ramificd de la actual. En caso de

32

que la rama indicada derive de otras ramas, el rebase considerara todos los cambios
desde que se ramifico la primera rama de la que deriva la de destino (Chacon y Straub,
2020).

Por cada cambio nuevo en la rama indicada, se comparan las diferencias con la rama
actual y se hace una mezcla por cambio. Para hacer un rebase el comando es (Chacon
y Straub, 2020):

git rebase <rama objetivo>

Rebase ofrece cambios mas limpios que un merge, donde un montén de cambios
aparecen de un momento a otro. Por otro lado en ramas con muchos commits de
diferencia hacer un rebase puede ser una tarea tediosa, puesto que hay que hacer una

mezcla por cada cambio en el historial (Chacon y Straub, 2020).

5.3.7.3. Resolviendo conflictos de integracién

En ciertos casos ocurriran conflictos al momento de hacer una mezcla o un rebase. Los
conflictos se producen cuando se ha editado el mismo archivo en ambas ramas antes
de hacer la integracién. Si al hacer una integracién Git indica que hay un conflicto, lo

primero que debe hacer es usar el comando (Chacon y Straub, 2020).

git status

Git mostrara los archivos que presentan conflictos, deben ser resueltos manualmente
ya que el manejador no puede saber como deben combinarse los cambios de ambas
ramas. Los archivos con conflictos tendran sefialado la porcién del texto que conflictua
con los siguientes caracteres (Chacon y Straub, 2020):

2ZLLLLLRLLS
(cédigo en rama destino)

(cédigo en rama a integrar)
SOO5555>>>

Se debe elegir uno de los dos bloques de cédigo, una mezcla de ambos o introducir un
texto diferente, como mejor se resuelva el conflicto. Cuando termine de revisar los

conflictos se registran los cambios de la integracion (Chacon y Straub, 2020):

33

git add <archivos a los que se le han resuelto conflictos>

Finalmente se registra un commit para indicar que hemos resuelto los conflictos,

mezclado las ramas (Chacon y Straub, 2020):
git commit -m “<mensaje del commit>”

Si necesita deshacer todos los cambios alrededor de la integracion y suspenderla,

puede usar (Chacon y Straub, 2020):
git merge --abort

5.3.8. Etiquetas y lanzamientos

Después de desarrollar caracteristicas del producto en diversas ramas y resolver
conflictos de integraciones, eventualmente el equipo de trabajo debe contar con una
version de lanzamiento del producto. Git permite distinguir commits que representan el
estado o versiones especiales del producto, como lanzamiento, candidata a
lanzamiento, lanzamientos anteriores o cualquier otra distincion por medio de etiquetas
(Chacon y Straub, 2020).

Para crear una etiqueta se usa el comando (Chacon y Straub, 2020):

git tag -a <nombre clave de la versién> -m “<Descripcién de la versién>”
Por ejemplo:

git tag -a v1.0 -m “Primera versioén publica”

Para listar las etiquetas existentes se emplea (Chacon y Straub, 2020):
git tag

Puede elegir una etiqueta para trabajar a partir de su estado usando checkout (Chacon
y Straub, 2020):

git checkout <nombre clave de una version existente>

34

6. Desarrollo iterativo-incremental

6.1. Metodologias de desarrollo de software

Una metodologia de desarrollo de software es una estrategia concreta que se usa para
construir un producto de software. Existen muchas metodologias, los modelos “clasicos”
(basados en planes) de desarrollo de software plantean el proceso por etapas: disefio,
implementacion, validacion y lanzamiento. Estas etapas ocurren de forma secuencial,
una tras otra, de forma que se obtiene el disefio del producto, se codifica, se valida que
el producto resultante se apegue al disefio y se procede a su lanzamiento (Sommerville,
2011).

6.2. Desarrollo de software iterativo-incremental

La estructura lineal de los modelos “clasicos” de desarrollo de software los hace poco
aptos al cambio. Por ejemplo durante el desarrollo de una red social pueden cambiar
los patrones de interaccion que se hubieran definido al inicio del proyecto, es posible
que para cuando sea lanzado los usuarios consideren esta interaccion como algo
obsoleto y existan dificultades para la adopcién del producto (Bourque et al., 2014,

Sommerville, 2011).

Para prevenir este problema se han propuesto los modelos de desarrollo
iterativo-incrementales. En cada iteracidn se construye un conjunto de caracteristicas
del producto de manera parcial: se eligen qué caracteristicas trabajar y qué alcance de
ellas se va a desarrollar. En el siguiente periodo pueden completarse todas o algunas
de las caracteristicas previamente desarrolladas, implementar todas o algunas de las
caracteristicas aun no implementadas, o alguna combinacion de ellas (Sommerville,
2011).

6.3. Metodologias Agiles

Las metodologias Agiles incluyen varias de las metodologias de desarrollo de software
mas aceptadas y populares hoy en dia (principalmente para el desarrollo de
aplicaciones), como Scrum o Extreme Programming. Se basan en procesos

iterativo-incrementales pero ademas enfatizan el rol del cliente, usuarios y otros

35

interesados como miembros del equipo de trabajo. En estas metodologias se busca
contar con una participacion activa del cliente y/o usuarios, o en su defecto
representantes de ellos, de manera que participen en actividades de disefio y
validacion, buscando construir un producto que sea apto segun sus necesidades e

intereses (Sommerville, 2011).

En metodologias Agiles se prefiere que los incrementos ocurran en el menor periodo de
tiempo posible, se recomiendan periodos de entre 2 semanas y 2 meses. El proceso de
desarrollo ocurre de manera completa en cada incremento pero el tiempo que se le
dedican a las actividades de cada etapa depende del avance del proyecto y las

prioridades de cada incremento (Sommerville, 2011).

Por ejemplo, al inicio de los proyectos las actividades de disefio son las mas relevantes,
pero también pueden ocurrir actividades de implementacion para preparar prototipos, y

de lanzamiento para presentar propuestas a los interesados (Sommerville, 2011).

Las metodologias Agiles poseen una naturaleza centrada en el usuario, fomentando el
desarrollo de requerimientos “no funcionales”, como el no requerir de condiciones o
entrenamiento especializado para usar la aplicacion y la facilidad de uso que habilitan

una mejor adopcioén por el publico (Sommerville, 2011).
7. Desarrollo guiado por pruebas

7.1. Estrategias de validacion de software

La calidad de un producto de software depende de su apego a su especificacion, es
decir el apego a sus requerimientos y que estos reflejen adecuadamente las
necesidades y expectativas de los clientes, usuarios u otros interesados relevantes.
Una manera de validar que el producto que se construye se apega a su especificacion
es validando las precondiciones y postcondiciones de las funciones que implementan
sus caracteristicas y funcionalidades, verificando que bajo el contexto de uso esperado,

el software se comporta de la manera esperada (Sommerville, 2011).

36

7.2. Automatizacion en procesos de software

Asi como los compiladores transforman cédigo que se asemeja a un lenguaje natural en
cbédigo que puede ser ejecutado por la plataforma de ejecucion destino, existen varias
herramientas que ayudan a automatizar actividades que forman parte de los procesos
de software. Los IDE por ejemplo suelen incluir mecanismos para automatizar tareas de
refactorizacién, como mover un archivo de un directorio a otro ajustando referencias,

paquetes o nombres de clase como pueda ser necesario (Sommerville, 2011).

A esta automatizacion de procesos de software se le llama Ingenieria de Software
Asistida por Computadora. En el caso de la validacion de software, validar entradas y
salidas para verificar el comportamiento del producto resulta apto para ser
automatizado, unicamente se requiere definir un programa que no forma parte del
producto final, sino que toma elementos o unidades del producto final y verifica que
dadas las entradas esperadas, el producto de software que se construye o modifica

produce los resultados esperados (Martin y Martin, 2007).

Ejemplo de automatizacion de pruebas de un servidor Web

En el caso de un servidor Web puede enviar una peticion HTTP con los parametros
adecuados y verificar que la respuesta sea la esperada (por ejemplo un codigo 200).
También es posible verificar que produzca los cambios esperados en el servidor (como
escribir un archivo, del que podriamos verificar su presencia en el disco del servidor, su

tamano y firma SHA).

7.3. Desarrollo guiado por pruebas

El desarrollo guiado por pruebas (TDD por sus siglas en inglés Test Driven
Development) aprovecha la automatizacion de validaciones de precondiciones y
postcondiciones de las funciones que implementan las caracteristicas de un producto
de software. En un ejercicio tipico de metodologias Agiles, los entregables de software
desarrollados durante cada tarea de codificacién son integrados al final del incremento
en que ocurren, en combinacion con el TDD estos cambios en el producto en
construccion son verificados antes de acumularlos en la siguiente versidon candidata a

lanzamiento (Martin y Martin, 2007; Sommerville, 2011).
37

El TDD parte de definir pruebas para las caracteristicas del producto a implementar. La
meta de los desarrolladores es que sus entregables de software satisfagan las pruebas
que les corresponden al final del periodo de implementacién. En un proceso Agil las
pruebas se definen (o revisan) al inicio de cada incremento (por ejemplo al seleccionar
historias de usuarios), de acuerdo con los objetivos de dicho incremento (Martin y
Martin, 2007; Sommerville, 2011).

Las pruebas se definen en un repositorio (0 sub-repositorio) ajeno al que contiene el
codigo del producto. Las pruebas son parte del proyecto, no del producto; validan su
comportamiento. El repositorio de pruebas suele ejecutarse en un entorno de ejecucién
que incluye un marco de trabajo especializado, el cual automatiza las pruebas de forma
que solo es necesario definirlas como funciones o métodos en uno o varios scripts (o

clases). Este entorno suele ser llamado “Entorno de pruebas”.

El repositorio del producto se trata como una dependencia del repositorio de pruebas:
importa el producto para probar sus funcionalidades, proveyendo entradas de manera
automatizada para verificar su comportamiento a través de las salidas directas o
indirectas que produzca (por ejemplo si la funcion del producto devuelve un numero,
genera un flujo de datos, escribe un archivo o modifica un registro en Base de Datos, se
comprueba que los datos producidos cumplan con las caracteristicas esperadas segun
el disefio de la funcion y el producto de software en general) (Martin y Martin, 2007;

Sommerville, 2011).

Una ventaja adicional del TDD al aplicarlo con metodologias Agiles es que las pruebas
ofrecen un medio accesible para los desarrolladores para conocer las funciones del
producto, adquirir una idea general de su implementacién, modo de uso y operacion. En
metodologias Agiles se busca producir la menor cantidad necesaria de documentacién
en formatos tradicionales, las pruebas son un recurso valioso de documentacion no
tradicional (Martin y Martin, 2007).

38

8. Desarrollo centrado en el usuario

8.1. Origenes del Diseno de Interaccion

En la década de 1940 durante la segunda guerra mundial, incremento la importancia de
las fuerzas aéreas resultando en un cambio de enfoque: los pilotos se convirtieron en
recursos mas valiosos que los aviones que operan. Como resultado los disefiadores de
aeronaves comenzaron a crear cabinas e instrumentos que se adaptan a las
propiedades mentales y fisicas de los pilotos, es decir se adaptan a sus factores
humanos. Esta filosofia de disefio se hizo popular en otras industrias, impulsadas con
nuevas capacidades de automatizacion que permiten un mayor rango de usuarios con

menor entrenamiento (Bernsen y Dybkjaer, 2009; Pratt y Nunes, 2012).

8.2. Diseno Centrado en el Usuario

El Disefio Centrado en el Usuario (DCU) es una estrategia de desarrollo de productos
que enfatiza la manera en que los usuarios realizan actividades relacionadas con el
producto, sus necesidades, habilidades y en general factores humanos en torno al
producto, de manera que resulte apto para los usuarios. EI DCU sostiene que involucrar
usuarios en el desarrollo y evaluacion de un producto es crucial, por lo que en
metodologias que adoptan DCU el usuario esta presente a lo largo del proyecto, sea de
forma fisica, mediante representantes o por medio de modelos. EI DCU se aplica en el
Disedio de Interaccion (Interaction Design 1xD), del que Ila Interaccion
Humano-Computadora (IHC) es un enfoque que aborda la interacciéon con productos de
software (Bernsen y Dybkjaer, 2009; Dix et al., 2004; Nielsen, 1994; Pratt y Nunes,
2012).

8.3. Usuarios tipo

Los usuarios tipo son un subconjunto de los interesados de un proyecto cuyas
caracteristicas corresponden con los factores humanos contemplados para los usuarios
en la especificacion del producto. Estas caracteristicas incluyen pero no se limitan a:
edad, ocupacion, intereses, habilidades, capacidades fisicas, género y complexion

fisica. Al interactuar a lo largo del proyecto con estos usuarios se obtiene un mejor

39

entendimiento de las actividades en las que el producto busca tener algun impacto,
permitiendo verificar que el producto cumple sus objetivos respecto a las actividades del
usuario (Dix et al., 2004).

8.4. Proceso tipico de DCU
Varios enfoques de DCU sugieren actividades especificas que deben ser completadas
en ciertas etapas del ciclo de vida del producto. El proceso tipico de DCU puede

describirse mediante las siguientes cuatro fases (Bernsen y Dybkjaer, 2009; Dix et al.,
2004):

1. Analisis. En etapas tempranas del proyecto, deben alcanzarse acuerdos con los
interesados y establecer la visidn del proyecto. Se incluyen tareas de usabilidad
en el plan del proyecto, debe ser ejecutado por un grupo multidisciplinario que
permita abordar estas tareas con pericia suficiente. Se realizan estudios del
contexto del proyecto y perfiles de usuarios para obtener una documentacion de

escenarios de uso y requerimientos de desempeifo del usuario.

2. Diseno. Se presentan conceptos de disefio y modelos del flujo de navegaciéon
con los que se crean prototipos de baja fidelidad que permiten explorar y ajustar
el disefio propuesto. Después se producen prototipos de alta fidelidad que
también deben ser evaluados para afinar el disefio. Se prefiere realizar las
evaluaciones de los prototipos mediante pruebas con usuarios. El disefo
resultante se documenta en una especificacion de disefio, acompanada de

estandares y recomendaciones generadas para el proyecto.

3. Implementacion. Deben realizarse evaluaciones heuristicas del producto
conforme evoluciona, y realizar pruebas de usabilidad tan pronto como sea

posible. Estas evaluaciones sirven para realizar un ajuste continuo del producto.

4. Lanzamiento. Se obtiene retroalimentacion de usuarios por medio de
cuestionarios y estudios de campo para medir el grado con el que se alcanzan

los objetivos en torno a factores humanos.

40

9. Programacién defensiva

9.1. Manejo de entradas de datos

Al codificar una funcion de software se esperan ciertas precondiciones establecidas por
el diseno del producto, en especifico establecidas por el disefio de la funcién en
cuestion. Estas precondiciones son las caracteristicas que deben tener los datos que
reciba la funcion y el estado general del producto para que la funcion produzca los
resultados esperados, como muchos otros tipos de productos el software solo puede

garantizar su comportamiento bajo condiciones especificas contempladas en su disefio.

En lenguajes fuertemente tipados (como C y Java) existe una forma implicita de
validacion de las precondiciones dado que el ambiente de compilacién se encarga de
verificar que cuando se usa una funcion, los tipos de los parametros que se le proveen
correspondan la definicién de la funcién. Por ejemplo, si se intenta codificar una llamada
con texto a una funcion que recibe datos numéricos, el compilador detectara este

problema y ni siquiera compilara el producto (Gabbrielli y Martini, 2010).

En el caso del desarrollo de interfaces, sean para componentes automaticos o
interfaces de usuario, también puede ocurrir esta clase de problemas. Un usuario puede
proveer datos no esperados, como escribir el nombre de un numero en lugar de su
valor numérico. Esta clase de problemas pueden deberse a una amplia serie de
factores que pueden ir desde negligencia del usuario, hasta ambigliedades en la
especificacion de las interfaces de software, pasando por errores en el disefio o en la

codificacion.

9.2. Programacion defensiva

La programacion defensiva es una técnica de disefio de software en la que se
desconfia de las entradas que se proporcionan a una funcion, programa o la manera en
que se usan. Por ejemplo en POO una estrategia de programacion defensiva es
inicializar los atributos de clase en los constructores, de esta manera se mitigan

problemas en ejecucion derivados de leer una variable sin asignar (McConnell, 2004).

41

Una de las aplicaciones mas populares de Programacion defensiva es validar entradas
de usuario o sistema. Suelen agregarse funciones auxiliares que se limitan a tomar las
entradas de una funcién y verificar que tengan el formato y rango de valores esperados.
Si no los tuvieran se recomienda disparar una excepcion, pues el flujo normal de
ejecucion contempla que los parametros son validos, por lo que es mas apropiado
arrojar una excepcion e iniciar un mecanismo de recuperacion cuando esto no ocurre
(McConnell, 2004).

10. Calidad de cédigo

10.1. Prioridades en procesos Agiles

Los procesos Agiles enfatizan las necesidades y expectativas de los interesados,
incorporandolos al equipo de trabajo como supervisores del disefio y la validacion del
producto. El producto se construye en incrementos breves que permiten realizar ajustes
al disefio o a los requerimientos conforme el producto evoluciona (Martin y Martin, 2007;

Sommerville, 2011).

El ritmo de trabajo esperado en un proceso Agil busca la optimizacién de todas las
tareas que no estan directamente involucradas con la construccion del producto. Una
actividad que suele consumir mucho tiempo para producir sus productos, y estos al final
no suelen ser empleados plenamente, es la documentacién (Martin y Martin, 2007;

Sommerville, 2011).

En metodologias “clasicas” de software (guiadas por plan) se contemplan actividades
exhaustivas para la generacién de documentacién. En esta clase de procesos se suele
generar mucha documentacion que describe en varios niveles de abstraccion el
producto desde varios puntos de vista, por ejemplo: describiéndolo desde el punto de
vista del usuario (como un manual de usuario), describiendo sus interfaces (como API),
describiendo sus requerimientos (Especificacién de Requerimientos de Software); entre
otros (Martin y Martin, 2007; Sommerville, 2011).

En metodologias Agiles se prefiere generar la minima cantidad de documentacién

necesaria, priorizando la documentacion de alto nivel. Puesto que la documentacion es
42

un subproducto valioso de un proyecto de software, ain en metodologias Agiles se
busca obtener documentacion completa del producto. La propuesta de estas
metodologias es recurrir a formatos de documentacion informal. Una de las estrategias
recomendadas es obtener documentacion directamente de los artefactos de software
(Martin y Martin, 2007; Sommerville, 2011).

10.2. Calidad de cédigo

Una forma de obtener documentacion directamente de los artefactos en el repositorio
del proyecto es empleando una estructura clara del codigo del producto de software en
construccion. Puesto que el cdédigo debe reflejar la especificacion del producto, el
codigo en si mismo es una forma de la especificacion del producto. Si la estructura del
cbdigo es clara puede ofrecer una via para entender el disefio del producto (Martin,
2008).

10.2.1. Cédigo limpio

El cédigo limpio es una propuesta que busca generar cédigo de alta calidad, facil de
escalar y mantener. Se vale de practicas agiles como la simplicidad, abstraccién y la
refactorizacion (vea la seccién 16.1). Algunos de los principios del codigo limpio son los
siguientes (Martin, 2008):

e Nombres significativos. Las variables, funciones y clases en el cédigo fuente
de un software deben tener nombres claros y significativos expresados en muy
pocas palabras (una sola de preferencia). EI nombre de entidades de software

debe revelar la funcién o propdésito de la entidad que nombran.

e Principio de unica responsabilidad. Cada componente de un software debe
tener un uUnico proposito, responder a una sola responsabilidad en la
especificaciéon del producto. Es comun tener componentes de alto nivel cuyas
funciones son generales, estas funciones generales son implementadas por

componentes con responsabilidades mas especificas.

Puede contarse con varios niveles jerarquicos de responsabilidades para

especificar el papel que tiene cada componente de un software.
43

Mejora continua. Cada vez que se edita cualquier parte del codigo fuente de un
software debe revisarse su integridad y hacer mejoras alrededor del codigo
modificado. Cuando el disefio no es comprensible por medio del cédigo que se
modifica, es necesario revisar tanto el disefio del componente del que forma
parte, como la implementacion para evitar que el componente sea dificil de
mantener y se convierta en un factor de riesgo. Para esto suele aplicarse la
practica de refactorizacion, que consiste en transformar cédigo sin modificar su

comportamiento, pero con una mejor calidad que en su forma original.

Funciones cortas. Tanto funciones como scripts o clases deben ser lo mas
pequefias posibles. Se recomienda fragmentarlas en partes con
responsabilidades mas especificas cuando se determina que su responsabilidad

puede dividirse o cuando el artefacto es demasiado largo.

Comentarios significativos. Los comentarios en el cddigo deben ser breves y
su unico proposito debe ser el de explicitar aspectos de la operacion o el disefio
del software que no se aprecian a partir de los nombres de los artefactos
involucrados. Los comentarios tautoldgicos (como // devuelve verdadero seguido
por return true), asi como el cdédigo muerto (cédigo comentado) son

innecesarios y hacen el codigo dificil de leer.

Respetar la encapsulaciéon en POO. El principio de encapsulacién nos ayuda a
definir programas POO que reducen problemas de codificacion. Por ejemplo las
variables privadas nos aseguran que nadie fuera de la clase en que estan
definidas pueden depender de ellas, por lo que le otorga control a la clase en la
que se definen el comportamiento de esas variables. Podemos exponer sus
valores y compartirlos con otros componentes del software, pero siempre bajo

los términos de la clase a la que pertenecen.

Organizacion del repositorio. Es importante organizar adecuadamente los
proyectos. Por ejemplo separar el codigo de pruebas del codigo del producto

principal, o separar el cédigo de la base de datos del cdédigo del producto

44

principal. Seguir las convenciones de codificacion y organizacién que se usan en
la plataforma para la que estemos desarrollando es una practica que asiste la

organizacion de proyectos de software.

La calidad de cédigo ha resultado de gran utilidad para incrementar la productividad en
proyectos de software, existe evidencia de que el cédigo de mala calidad incentiva la
generacion de mas cédigo de mala calidad, seguir practicas de codigo limpio ayuda a

generar productos de calidad en tiempo y forma (Martin, 2008).
11. Introduccién a JavaScript

11.1. Netscape y la especificacion ECMAScript

A mediados de la década de 1990 Netscape Communications Corporation publico una
nueva version de su navegador Web Netscape navigator, uno de los primeros
navegadores Web en el mercado y uno de los mas populares en ese momento. Esta
nueva version de Netscape implementa dos caracteristicas que incrementan la
capacidad de interaccion con el contenido Web por medio de Java Applets y un entorno
de ejecucién capaz de interactuar con la pagina Web que se visualiza, JavaScript
(Hamerly et al., 1999).

Poco tiempo después JavaScript fue adoptado como una especificacion estandarizada
llamada ECMAScript. Esta estandarizacion permite una adopcion uniforme de este
entorno de ejecucién en otros navegadores, como Microsoft Internet Explorer y Opera.
Las capacidades de interaccion de JavaScript resultaron mas generales y amigables
con el usuario que los Java Applets, convirtiéndose en una de las bases de lo que hoy

conocemos como la Web 2.0 y las aplicaciones Web (Flanagan, 2011).

Hoy en dia ECMAScript estd especificado en la norma internacional ISO/IEC
22275:2018. JavaScript se ha convertido en el “lenguaje de la Web”, las aplicaciones
Web implementan una parte significativa de sus caracteristicas mediante codigo

JavaScript que es ejecutado por los navegadores Web (Crockford, 2008).

45

11.2. Caracteristicas de JavaScript

JavaScript es un lenguaje multiparadigma, principalmente Orientado a Objetos y
Funcional. JavaScript es débilmente tipado y cuenta con funciones de primer orden.
Tiene una sintaxis similar a la de Java o C, aunque opera de forma mas similar a Lisp o
Scheme. Existen varias caracteristicas de JavaScript que prefieren evitarse puesto que
suelen ser el origen de problemas en los productos que se construyen con él. Este tipo
de caracteristicas son por las que JavaScript suele tener una mala reputacion, no

entender las caracteristicas problematicas puede introducir defectos (Crockford, 2008).

Las caracteristicas problematicas de JavaScript son el resultado de un corto periodo de
desarrollo que no permitieron evolucionar dichas caracteristicas, su integracion en el
navegador Netscape y la rapida adopcion de las primeras versiones se hubieran
beneficiado de mayores periodos de desarrollo y prueba. Algunas de estas

caracteristicas a evitar son las siguientes (Crockford, 2008):

e JavaScript soporta bloques de comentarios de una sola linea con // y también
comentarios multi-linea con /* ... */. Sin embargo en algunas situaciones es
posible que necesitemos usar los simbolos */ como parte de una expresidn
regular, por lo que los comentarios multi-linea son propensos a errores. Por esto
se prefiere evitar usar bloques de comentarios con /* ... */ (Crockford, 2008).
Ejemplo de comentario multi-linea con errores:

/*
var coincidenciasRegex = texto.match(/a*/)
*/
En el ejemplo anterior puede entenderse que el contenido del comentario es la
declaracion y asignacion de la variable coincidenciasRegex con el arreglo que

devuelve la funcidn string.match(regexp)’.

Sin embargo la expresion regular que se pasa como parametro de match contiene
los simbolos */, lo que termina el comentario de manera prematura e

interpretando la instruccion)\n*/, que no es valida en JavaScript.

! hitps://developer.mozilla.org/es/docs/Web/JavaScript/Reference/Global_Objects/String/match
46

https://developer.mozilla.org/es/docs/Web/JavaScript/Reference/Global_Objects/String/match

e La definicion de bloques de cdédigo no necesariamente delimita alcances. Las
variables de un script JavaScript pueden ser alcanzables inclusive desde otro

script o programa.

e JavaScript deduce la ausencia de punto y coma (;) como delimitador de
sentencia al final de una linea de cddigo. Esto resulta en una limitacion para
separar sentencias en renglones, pues JavaScript puede intentar interpretar
varias lineas como sentencias diferentes aunque sean parte de una sola. Se
prefiere escribir codigo JavaScript sin punto y coma, por lo que es necesario que
al final de una linea se concluya una sentencia o se separe de manera que el
intérprete no inserte puntos y comas (por ejemplo iniciando un bloque de cédigo

o iniciando la siguiente linea con un operador de acceso).
Ejemplo de separacién de sentencias problematica

La siguiente linea sera interpretada como dos sentencias individuales:

let

vl

a
+
En lugar de asignar el valor 8 en a, asignara el valor 3 en a y evaluara el valor 5.
La linea anterior puede separarse de la siguiente manera para evitar problemas
de interpretacidon, note que el operador de asignacion indica al intérprete que la

sentencia esta incompleta:

let a =
3+5

Si el ultimo caracter fuese el operador +, el intérprete también detectaria que la
sentencia esta incompleta por lo que podria ser una estrategia para separar una
sentencia en varios renglones. Sin embargo seria menos claro para otros

programadores que leer una asignacion incompleta.

e En JavaScript existen dos valores vacios: undefined Yy null. undefined s un tipo

de datos especial que indica un valor no definido, mientras que null representa

47

una direccion de memoria no asignada. Pese a que ambos son valores vacios,

no son equivalentes, por lo que es necesario distinguirlos por separado.

Existen dos grupos de operadores de equivalencia: los operadores de similitud ==
y != y los operadores de equivalencia === y !==. Los operadores de similitud
tratan de convertir los tipos de datos de los operandos para determinar si
representan el mismo valor. Por su parte, los operadores de equivalencia

comparan valores y tipos de datos.
Ejemplo de diferencia de evaluacion entre equivalencia y similitud

“1” == 1 es evaluado como verdadero pues por similitud entre el texto “1” y el
entero 1 son operandos que representan el mismo valor. En cambio la
equivalencia “1” == 1 es evaluada como verdadera puesto que el texto “1” y el

entero 1 son valores diferentes.

En general se recomienda usar los operadores de equivalencia y no los de

similitud.

Las operaciones numéricas con operandos no-numéricos NaN (Not a Number)
tiene comportamientos inconsistentes, en particular que no es posible determinar

si un valor NaN es equivalente a NaN: NaN !== NaN produce verdadero.

Esto ocurre ya que JavaScript usa tipos débiles, el intérprete siempre intenta
ejecutar instrucciones aun cuando los parametros de una funciéon no tengan el

tipo de datos adecuado.

12. JavaScript — Sintaxis y Operadores basicos

Declaracion de variables

Los nombres de variables deben empezar con una letra que puede estar seguida por

cualquier combinacion de: letras, numeros y guiones bajos. Como en muchos lenguajes

existen palabras reservadas que no pueden utilizarse como nombres de variables
(Crockford, 2008).

48

Es importante considerar que los nombres de variable de JavaScript son sensibles a

mayusculas: param, Param y paRam son tres variables diferentes (Crockford, 2008).

En JavaScript las variables se declaran mediante alguna de las siguientes tres palabras
reservadas (Crockford, 2008).

121.1. var

Es el operador clasico de JavaScript para definir variables. Es posible re-definir una
variable previamente declarada con var, en cuyo caso el valor de la variable es el ultimo
asignado. El alcance asociado a una variable declarada con var es el de la funcién
inmediata en la que esta definida. Cuando se declara una variable en el nivel mas
externo de un script, define variables globales (accesibles no solo al script en cuestiéon

sino a todo el entorno de ejecucioén) (Crockford, 2008).

Al declarar con var las variables se preparan en memoria, siendo inicializadas con
undefined cuando el intérprete de JavaScript lee un script (y la variable no ha sido
declarada previamente). Puesto que como muchos otros lenguajes interpretados la
interpretacion y ejecucion de codigo JavaScript ocurren en fases separadas, es posible
acceder al valor de estas variables antes de que sean declaradas en el flujo del script
(Crockford, 2008).

Ejemplo de acceso al valor de una variable no declarada en el flujo de ejecucion

El siguiente bloque de cddigo JavaScript puede ser ejecutado sin generar errores pese

a que lee una variable antes de que sea declarada en el flujo de la ejecucion:

console.log(porDeclarar) // muestra el mensaje undefined en la consola
var porDeclarar // variable declarada, en la interpretacién se prepara con undefinded
porDeclarar = @ // variable asignada explicitamente durante la ejecuciodn

12.1.2. let
Es un operador introducido en la version 6 de la especificacion ECMAScript que
responde a los problemas que introducen las variables var. Let también permite definir

variables que cumplen con las reglas de nombrado del lenguaje, sin embargo es mas

49

estricto. Let no permite definir una variable mas de una vez (intentarlo produce un
error). El alcance de sus variables esta delimitado por el alcance del bloque de cédigo

inmediato como en muchas otras plataformas de ejecucién (Crockford, 2008).

Las variables declaradas con Let no se inicializan ni preparan con la interpretacion de
un script, intentar acceder a una variable Let antes de que sea asignada o declarada

resulta en un error (como en muchas otras plataformas de ejecucion) (Crockford, 2008).

12.1.3. const

const €s un operador que permite declarar constantes en un programa JavaScript. Su
comportamiento es analogo al de una variable declarada con Let, salvo porque las
variables Let pueden volver a ser asignadas tantas veces como se desee, mientras que
las variables const Unicamente pueden ser asignadas una sola vez, por lo que se usan

para definir constantes (Crockford, 2008).
12.2. Tipos de datos y sus operadores

12.2.1. Objetos
En JavaScript todas las variables son instancias de un tipo principal: objetos. Los tipos
de datos primitivos (como numeros o booleanos) son instancias de objetos, por lo que

poseen métodos. Puede definir un objeto nulo utilizando null (Crockford, 2008).

12.2.1.1. Acceso
Para acceder a los miembros de un objeto se usa el operador punto. En el caso de un

arreglo se usan paréntesis cuadrados para acceder a sus localidades (Crockford, 2008).

Ejemplo de uso del operador de acceso
objeto.toString()

En el caso de un arreglo:
arreglo[@]

También es posible acceder a los miembros de un objeto paréntesis cuadrados,

indicando el nombre del miembro al que se desea tener acceso. Esto es especialmente
50

util cuando los miembros de un objeto tienen nombres que no cumplen con las reglas
de nombramiento de JavaScript, como en objeto[“apellido-paterno”] (note el guién

medio, es invalido en un nombre de variable JavaScript) (Crockford, 2008).

Tanto al acceder a arreglos como objetos, si intentamos acceder a un miembro que no
existe, obtendremos el valor undefined. El usar objetos como arreglos es analogo a los
arreglos asociativos de PHP, por lo que los objetos de JavaScript también se usan como
tablas hash o diccionarios (Crockford, 2008).

Ejemplo de uso de un objeto como arreglo asociativo

let coloresHex = {
rojo : ‘#FFo000°,
verde : ‘#0OFF00°,
azul : ‘#0OOOFF’

}
coloresHex[‘rojo’] // devuelve ‘#FF0000’

También es posible incluir miembros al vuelo en un objeto. Basta con hacer referencia a

un atributo aun no definido y asignarle algun valor (Crockford, 2008):
objeto.miembroNuevo = “algiun valor”

12.2.1.2. Arreglos

Los arreglos en JavaScript son un tipo especial de objeto en el que se agregan
miembros identificados por enteros. Ademas de ser similares a una tabla hash o
diccionario, cuentan con métodos de pila (stack), como push para agregar miembros y
pop para quitarlos. También cuentan con un atributo /ength que indica el numero de
elementos actualmente en el arreglo. Los arreglos de JavaScript se indexan a partir de
cero (Crockford, 2008).

La forma preferida de crear arreglos es utilizando literales y no constructores
(Crockford, 2008):

var arreglo = [1, 2, 3, 4, 5]

La forma preferida de agregar elementos en un arreglo es tratarlo como una pila y

emplear el método push, que inserta elementos al final del arreglo (Crockford, 2008).

51

Ejemplos de manipulacion de arreglos

arreglo.push(nuevoValor)

Si se agrega el valor nuevovalor = 6 mediante la instruccion anterior, el estado

resultante de arreglo es:
[1, 2, 3, 4, 5, 6]

De forma similar se eliminan elementos de un arreglo tratandolo como una pila
empleando el método pop, el cual elimina el ultimo elemento del arreglo. Retomando el
ejemplo anterior, al aplicar la operacion pop() después de insertar nuevovalor = 6, vuelve

a su estado original (pues se elimina el elemento antes insertado al final):
arreglo.pop() // arreglo vuelve a ser [1, 2, 3, 4, 5]

Para borrar elementos que no estén al final del arreglo, se usa el método splice que
recibe dos parametros obligatorios: el indice del arreglo a partir del que se quiere
cambiar el contenido del arreglo y el numero de elementos que desea eliminar (o
reemplazar, también puede proporcionar parametros adicionales que son insertados a

partir del indice del primer parametro) (Crockford, 2008).
arreglo.splice(1, 3) // arreglo ahora es [1, 5]

splice devuelve un arreglo con los elementos eliminados o reemplazados del arreglo en
que se haya llamado. Actualiza los indices y el tamafio del arreglo al quitar/reemplazar
los elementos indicados (Crockford, 2008). En el ejemplo anterior, el arreglo de

devuelve la operacion splice es:
[2, 3, 4]

12.2.1.3. Funciones

Las funciones son un tipo de objeto especial que se puede llamar a ejecutar. Al ser
objetos tenemos la libertad de tratarlas como valores: podemos almacenarlas en
variables y pasarlas como parametros. En los siguientes capitulos veremos funciones

con mayor detalle (Crockford, 2008).

52

12.2.1.4. Quitando miembros de un objeto
En JavaScript es posible quitar miembros de un objeto dinamicamente, de forma similar
a en que se asignan al vuelo. Para esto se usa el operador delete seguido por un

acceso al miembro de un objeto que se desea eliminar (Crockford, 2008).

Ejemplo de remocion de miembros de un objeto

delete objeto.miembroNuevo // miembroNuevo se quita del objeto

Tome en cuenta que si el objeto hereda propiedades de algun prototipo, y se quita un
miembro homénimo con otro definido en el prototipo (es decir, el objeto en cuestion
oculta un miembro heredado de su prototipo), el miembro permanecera en el objeto con

el valor que tiene en el prototipo (Crockford, 2008).

12.2.2. Tipos numéricos
En JavaScript existe un Uunico tipo numérico, flotantes de 64 bits. ElI valor
pseudo-numérico especial NaN (Not a Number) resulta de operaciones que no pueden

producir un resultado con los parametros dados (Crockford, 2008).

Como en muchos otros lenguajes se cuenta con operadores aritméticos + (suma), -
(resta), * (multiplicacién) y / (divisién). También se disponen de variantes del operador
de asignacion que permite auto-operar una variable con otra o algun valor, como a += 2.
El operador isNaN(number) nos ayuda a determinar si un valor numérico es NaN O no
(Crockford, 2008).

JavaScript cuenta con un objeto predefinido Math que contiene una serie de funciones
para trabajar con numeros, como Math.abs(number) que devuelve el valor absoluto o
Math.floor(number) que devuelve el menor entero mas cercano en la recta real al
numero dado (Crockford, 2008).

12.2.3. Cadenas de caracteres
En JavaScript es posible definir cadenas usando comillas dobles (“Hola mundo”) O
simples (‘Hola mundo’) indistintamente. En general se recomienda definir cadenas con

comillas simples, puesto que en documentos HTML/XHTML las comillas dobles se usan

53

para definir el valor de un atributo de un elemento del documento (como en
) (Crockford, 2008).

Una cadena puede contener cero o mas caracteres. El caracter de escape es \
(diagonal invertida). Las cadenas de JavaScript se conforman de caracteres Unicode
de 16-bits, pero no maneja un tipo de dato caracter como tal. En JavaScript un caracter

es una cadena de longitud 1 (Crockford, 2008).

12.2.4. Booleanos

En JavaScript se representan booleanos con las literales true (verdadero) y false
(falso), que representan los valores de verdad verdadero y falso respectivamente
(Crockford, 2008).

12.2.5. undefined
El tipo de datos undefined representa valores no definidos. Es diferente de NaN y null

(NaN es un numero y null un objeto) (Crockford, 2008).

12.2.6. Preguntando por el tipo de un valor
El operador unario typeof permite conocer en forma de cadena de texto el tipo de datos

que tiene algun valor o variable (Crockford, 2008).
typeof 1 === “number” // devuelve true

12.3. Valores de verdad
En JavaScript se sigue la filosofia de evaluar como falso los valores vacios o
equivalentes a cero. Estos son (Crockford, 2008): false (falso booleano), null

(apuntador de objeto nulo), undefined, ¢’ (cadena vacia), e (el nUmero cero) y NaN.
Cualquier otro valor se evaluara como verdadero (Crockford, 2008).

12.3.1. Operadores légicos
En JavaScript contamos con las operaciones logicas de conjuncion y disyuncion. Una

conjuncion se distingue por usar el operador &&, que devuelve el valor de su primer

54

operando si su valor logico se reduce a falso. En otro caso devuelve el valor de su

segundo operando (Crockford, 2008).

“false” & & 1 // produce 1

Por su parte, la disyuncién se caracteriza por el operador ||, en el que se busca si el
primer operando es verdadero, de ser asi devuelve su valor. En otro caso devuelve el

valor de verdad del segundo operando (Crockford, 2008).
0 || [{$}] // pl"OdUCE [{3}]

Note que los operadores & y || no necesariamente devuelven verdadero o falso, el
valor de verdad de ambas expresiones depende de los valores de verdad a los que se
reducen sus resultados. Retomando los ejemplos anteriores, “false” & & 1 se puede
reducir a verdadero puesto que devuelve 1, mientras que @ || “” se puede reducir a

falso puesto que devuelve la cadena vacia (vea la seccion 12.3).

12.4. Paso de valores

En JavaScript el paso es por referencias, no se copian valores. Esto significa que si
asigna una variable con otra, el valor de la primera variable sera el mismo objeto al que
apunte la segunda, por lo que si modifica los atributos del objeto en la segunda variable,
se veran reflejados en la primera (puesto que apuntan al mismo valor) (Crockford,
2008).

Ejemplo de manipulaciéon de un valor apuntado por dos variables diferentes

let arreglo = []
let x = arreglo
arreglo.push(1)

x[@] === 1 // true

12.5. Operadores de control de flujo

12.5.1. Control de flujo secuencial
En JavaScript se definen bloques IF — THEN — ELSE de la misma forma que en
lenguajes similares a C o Java: los bloques de cddigo se definen entre corchetes { } y

la clausula ELSE es opcional (Crockford, 2008).
55

if (condicion) {
hazAlgo()

} else {
hazOtraCosa()

}

También se cuenta con bloques switch que permiten realizar acciones dependiendo de
varios posibles valores de una condicion. Al igual que en Java y otros lenguajes se usa
la sentencia break al final de un caso (case) para evitar que se ejecuten los siguientes
salvo que esa sea nuestra intencion. Es posible agregar una clausula default para

cubrir cualquier caso no especificado (Crockford, 2008).

Ejemplo de bloque switch

swtich (condicion) {

case valore:
hazAlgo()

case valorl: // como no hay break entre valor® y valorl, valor@ ejecuta ambos casos
tambienHazEsto()
break

case valor2: // este caso es excluyente respecto a todos los demas
hazOtraCosa()
break

default: // este caso ocurre cuando la condicidn se reduce a un valor no especificado
hazLoQueNingunOtro()

}

Por ultimo tenemos el operador ternario que devuelve un valor dependiendo del valor

de verdad de una condicion (Crockford, 2008):
condicion ? valorSiVerdadero() : valorSiFalso()

12.5.2. Ciclos

En JavaScript se cuenta con las estructuras de ejecucion ciclica WHILE, FOR y DO —
WHILE. WHILE y DO — WHILE son muy similares, con la diferencia de que WHILE
verifica su condicion de permanencia antes de ejecutar su bloque de codigo, mientras
que DO — WHILE primero ejecuta su bloque de cddigo y al final evalua la condiciéon de
permanencia (Crockford, 2008).

while (condicion) {
hazVariasVecesONinguna()

}

56

do {
hazAlMenosUnaVez()
while (condicion)

Los ciclos FOR permiten definir una variable que asiste en la iteracion de estructuras
(Crockford, 2008).

JavaScript también soporta otro tipo de ciclo FOR que permite extraer todos los
miembros de un objeto y trabajar secuencialmente con cada uno de ellos. Por la forma
en que JavaScript maneja herencia usando prototipos en lugar de clases, es
recomendado usar el método hasownProperty(var) presente en todos los objetos,
esclarece si un miembro del objeto pertenece al objeto, o si pertenece a un prototipo del
que hereda (Crockford, 2008).

Ejemplo de iteraciéon de estructuras con FOR

Podemos iterar los miembros de un objeto de la siguiente manera:

for (miembro in unObjeto) {
if (unObjeto.hasOwnProperty(miembro)) {
hazAlgoCon(miembro)

}
}

Los miembros de un arreglo pueden iterarse con:

for (var i = @; i < arreglo.length; i++) {
hazAlgoCon(arreglo[i])
}

12.6. Precedencia de operadores

La tabla 2 exhibe los operadores de JavaScript, ordenados por precedencia de mayor a
menor (de arriba a abajo). Los operadores en el mismo renglén tienen la misma
precedencia, en caso de aparecer en una misma instruccion el orden de ejecucién es el

orden de lectura (tiene precedencia el primero que aparezca) (Crockford, 2008).

57

Operadores Sintaxis de los operadores en JavaScript
Operadores de acceso y llamada L1 0)
delete new typeof
Operadores unarios
+ - (signos numéricos) I (negacion)
Multiplicacion, divisién y moédulo * / %
Suma, concatenacion y resta + -
Desigualdad >= = > <
Equivalencia === ==
Conjunciodn logica &&
Disyuncién légica |
Operador ternario ?

Tabla 2. Operadores de JavaScript ordenados por precedencia de mayor a menor.

Recuerde que la precedencia de operadores es el orden en el que se ejecutan en una
instruccion, por ejemplo en la expresion aritmética 3 + 5 * 2, el operador * tiene mayor
precedencia por lo que primero se hace el producto y al final la suma (con el resultado

del producto).
13. Manejo de errores en JavaScript

13.1. Excepciones

El manejo de excepciones en JavaScript es muy similar a como se hace en otros
lenguajes: si se dispara una excepcidon dentro de un bloque de cddigo protegido (try -
catch), entonces la excepcidén disparada serd manejada en el bloque catch. Si la
excepcion es lanzada fuera de un bloque try - catch, termina la ejecucion de la funcion
actual y la excepcidn se propaga por el stack de ejecucién hasta ser atrapada por un

bloque catch o terminar la ejecucion del programa (Crockford, 2008).
58

Puesto que en JavaScript se definen objetos con base en prototipos y no en clases, no
existe alguna clase Exception que defina a todas las excepciones posibles. En su lugar
se crean objetos que deben tener al menos los siguientes dos miembros (Crockford,
2008):

e name — Representa el nombre de la excepcibn (como puede ser

“ArraylndexOutOfBoundsException”).

e message — Descripcion legible para humanos de la excepcion (por ejemplo “El

indice -1 no es valido en un arreglo”).
Se usa la clausula throw para disparar una excepcion (Crockford, 2008).

Ejemplo de disparo de una excepcién

throw {
name: “ArrayIndexOutOfBoundsException”,
message: “-1 no es un indice valido en un arreglo”

}

Note que el objeto que representa la excepcion puede tener otros atributos, es posible
agregar informacion respecto al problema que origind la excepcion o mecanismos de

recuperacion (Crockford, 2008).

13.2. Bloques try — catch

Los bloques try - catch en JavaScript atrapan cualquier excepcion que sea disparada
por las funciones que se llaman en él, incluyendo excepciones originadas por funciones
llamadas directa o indirectamente dentro del bloque try - catch. Puesto que las
excepciones no poseen alguna jerarquia de tipos como en otros lenguajes, en
JavaScript se atrapan todas las excepciones sin importar la razén que las haya causado
(Crockford, 2008).

try {
<instrucciones protegidas>

} catch (<nombre de variable del objeto excepcion>) {
<bloque de recuperacién de la excepcidn>

}

59

Si unicamente se desea manipular un tipo especifico de excepciones, puede revisar su
nombre, mensaje o cualquier otro atributo que deberia existir en la excepcion esperada:
si coincide con las caracteristicas esperadas entonces se ejecuta el resto del bloque de
recuperacion, de lo contrario puede relanzar la excepcidn para que sea atrapada por

otro bloque mas externo (o produzca el fin de la ejecucién) (Crockford, 2008).

Ejemplo de mecanismo de recuperacion para una excepcion especifica

try {
<instrucciones protegidas>

} catch (excepcion) {
if (excepcion.atributo && excepcion.atributo === ‘valor esperado’) {
<bloque de recuperacién de la excepcidn>
} else {
throw excepcion
}

}

14. Funciones de primer orden y anénimas

14.1. Declaracion de funciones

La sintaxis basica para definir una funcion es la siguiente (Crockford, 2008):

function <nombreFuncion>(<parametros separados por coma>) {
<cuerpo de la funciodn>

}

En JavaScript todas las funciones devuelven algun valor. Cuando no se incluye una
clausula return al final de una funcion, por defecto devuelve undefined. Si se incluye un
return pero no se especifica un valor a devolver, también devuelve undefined (Crockford,
2008).

Existe una excepcion a esta regla cuando se invoca una funcion usando el operador
new, €n este caso la funcién opera como constructor y devuelve la referencia a un objeto

creado (this desde el punto de vista del constructor que se define) (Crockford, 2008).

Las funciones que se disenan para ser usadas con el operador new deben tener la
primera letra en su nombre en mayuscula por convencion. Por ejemplo (Crockford,
2008):

60

var fecha = new Date()

Es posible definir atributos con valores por omisiéon u opcionales. Por convencién se
definen al final en la lista de parametros con una asignacion al valor por omision.
Cuando se llame a la funcion puede o no darse un valor alternativo a estos parametros.
También es posible definir una funcién cuyos parametros son totalmente opcionales
(Crockford, 2008).

Ejemplo de funcién con parametros opcionales

function ejemploParamsOps(paramObligatorio, paramOpl = null, paramOp2 = @) {

let primerParamOpConValor = paramOpl || paramOp2

if (primerParamOpConValor) {
console.log(“Al menos uno de los parametros opcionales es no-falso”)
return primerParamOpConValor

} else {
return paramObligatorio

}

}

Al llamar a una funcidn con parametros opcionales es posible especificar los
parametros a los que se les desea asignar algun valor. Para ello se debe especificar el
nombre de los parametros opcionales, asignandoles el valor deseado. Tomando la
funcidn ejemploParamsoOps del ejemplo anterior, se le puede proveer valor Unicamente al
parametro paramop2 (y por supuesto, al (los) parametro(s) obligatorio(s)) (Crockford,
2008):

ejemploParamsOps(“Valor obligatorio”, paramOp2="segundo valor opcional”)

Siempre que se llama a una funcion se le pasa un parametro especial llamado
arguments. Este es un arreglo con todos los valores que se le hayan pasado a la funcion,
incluyendo parametros no nombrados en la firma de la funcién, es decir, parametros
adicionales a los que espera la funcién. Esto permite definir funciones de aridad
arbitraria, funciones que pueden recibir cualquier numero de parametros (Crockford,
2008).

61

Ejemplo de funcién de aridad arbitraria
La siguiente funcion suma cualquier grupo de numeros que se le pase como

parametros :

function sumaCualesquiera() {
let i, sum = @
for (i = ©; i < arguments.length; i++) {
sum += arguments[i]

}

return sum

}

Puede invocar la funcion sumaCualesquiera con cualquier grupo de numeros, como:
e sumaCualesquiera(1,1) — 2
e sumaCualesquiera(1,2,3,4,5) — 15
e sumaCualesquiera(®.5, 1.5, 8) — 10.0

14.2. Funciones anénimas
También es posible definir una funcién sin nombre o andénima de la siguiente manera
(Crockford, 2008):

function(<paradmetros separados por coma>) {
<cuerpo de la funcién>

}

Ejemplo de funcién anénima

La siguiente funcién obtiene el valor minimo en un arreglo numérico y lo devuelve:

function(arreglo) {
let i, mayor = Number.MAX_ SAFE_INTEGER
for(i = ©; i < arreglo.length; i++) {
if (arreglo[i] < mayor) {
mayor = arreglo[i]
}
}

return mayor

}
Note que la funcién anterior se puede definir sin parametros y usar la variable arguments

en lugar de arreglo.

62

Si se desea invocar una funcién andénima tan pronto como se define, puede pasarle
parametros justo después de su definicion (Crockford, 2008):

function(<parametros separados por coma>) {
<cuerpo de la funcién>

} (<parametros>)
Lo anterior es valido aun cuando los parametros proporcionados son vacios como:

function(<parametros separados por coma>) {
<cuerpo de la funciodn>
} () // lista vacia de parametros

Existe una segunda sintaxis para definir funciones andnimas llamada funciones flecha,
se caracteriza por usar los simbolos => para abreviar la definicion de una funcion sin

nombre de la siguiente manera (Mozilla Corportation, 2023b):

(<parametros separados por coma>) => {
<cuerpo de la funcién>

}

La funcién anénima del ejemplo anterior puede ser transformada en una funcién flecha
simplemente quitando la palabra reservada function al inicio de la expresion y
agregando los simbolos => entre los parametros de la funcién y el corchete que inicia la

expresion del cuerpo de la funcion:

(arreglo) => {
let i, mayor = Number.MAX_SAFE_INTEGER
for(i = @; i < arreglo.length; i++) {
if (arreglo[i] < mayor) {
mayor = arreglo[i]
}
}

return mayor

}

Las funciones flecha también pueden ser invocadas inmediatamente al ser definidas,
pero es necesario envolverlas entre paréntesis antes de poner los paréntesis con los
parametros con que se desea ejecutar (Mozilla Corportation, 2023b).

((<pardmetros separados por coma>) => {

<cuerpo de la funciodn>
}) (<parametros>)

63

En algunos contextos como el anterior las funciones flecha pueden tener problemas de
interpretacion, por lo que se recomienda solo usarlas en contextos especificos donde

son permitidas o recomendadas.

14.3. Funciones de primer orden

JavaScript es un lenguaje de primer orden, lo que significa que sus funciones son
valores. Es posible pasarlas como parametros, almacenarlas en variables o como
miembros de objetos (en cuyo caso se consideran métodos) (Crockford, 2008).

let variable = function(<pardmetros>) {
<cuerpo de la funcién>

}

Para llamar a una funcién en una variable o miembro de una clase, se llama a la
variable que contiene la funcion seguida por la lista de los parametros con los que se

desea llamar a la funcion.

variable(<parametros>)

14.4. Alcances y cerraduras
Las variables definidas en un programa JavaScript pueden ser leidas por otros
programas en el mismo entorno de ejecucién cuando son definidas con var. Esto puede

generar conflictos con valores manejados por otros programas (Crockford, 2008).

Por su parte las funciones definen un alcance local aun con var. Se puede aprovechar
esta propiedad de las funciones para definir estructuras con alcances locales como

cerraduras de la siguiente manera (Crockford, 2008):

let objeto = function() {
var atributolLocalDelObjeto
return {
metodoLocalDelObjeto: function (<parametros>) {
<cuerpo del método local>
}
¥
FO

Note que la variable objeto se asigna con lo que devuelve una funciéon anénima

(observe los paréntesis al final que invocan a la funcion). La funcion devuelve un objeto

64

que posee atributos y métodos locales que no pueden ser accedidos fuera de él
(Crockford, 2008).

Note que aunque los atributos “privados” del objeto se definen fuera del objeto que
devuelve la funcion (como aparece en el ejemplo atributoLocalDelObjeto), se definen en
la cerradura de la funcion y puesto que el objeto también esta definido dentro de la
cerradura, pueden ser accedidos y manipulados por los métodos del objeto como

miembros de clase, pero no por otros objetos o scripts. (Crockford, 2008).

Esta estrategia es contraria a manipular el prototipo de un objeto, puesto que los
miembros de un prototipo son publicos y tienen efecto en todas las instancias del objeto
(Crockford, 2008).

Las funciones y cerraduras permiten crear moédulos, que son una coleccion de objetos y
funciones que ocultan sus mecanismos, eliminando los problemas que produce el

espacio de memoria global (Crockford, 2008).

Un ejemplo del uso de estas caracteristicas es la produccién de funciones. Es posible
crear funciones que producen otras funciones, estas pueden usarse para atender un
caso particular de algun problema, siendo configurada con algun valor indicado al
producirla o pueden almacenar resultados anteriores utilizando memoizacion
(Crockford, 2008).

Ejemplo de funcién que produce funciones
La siguiente funcion produce funciones que elevan un numero a una potencia
especifica indicada al producirla y ademas recuerda el resultado de cada potencia

calculada para no repetir operaciones (Crockford, 2008):

function elevaYRecuerda(a) {
var resultados = {}
return function(n) {
if (!resultados[a]) {
resultados[a] = {}
}
if (!resultados[a][n])
resultados[a][n] = Math.pow(n, a)
}

65

return resultados[a][n]

}
}

15. Convenciones de codificacion de JavaScript

15.1. JavaScript Object Notation — JSON
JSON es el nombre que se le da a literales de objetos, estas son definiciones de

objetos al vuelo en un programa JavaScript. Por ejemplo (Crockford, 2008):
let objetovacio = {}

El ejemplo anterior define un objeto que no tiene ningun miembro, mas que los
miembros definidos en el prototipo global de objetos. Podemos incluir miembros en un
objeto tratandolo como un diccionario en el que tenemos clave : valor, separados por
dos puntos. La clave o nombre de los miembros puede ser cualquier cadena, incluso la
cadena vacia. Por ejemplo (Crockford, 2008):
let persona = {

“nombre” : “Homero”,

“apellido” : “Simpson”

}

Cuando los nombres de los miembros del objeto cumplen con las reglas de nombrado
de variables de JavaScript se pueden omitir las comillas en los nombres de los
miembros. En el ejemplo anterior los miembros nombre y apellido cumplen con dichas
reglas, por lo que podrian definirse sin comillas. Si en su lugar apareciera
apellido-paterno, €l guion medio no es valido en un nombre de JavaScript, por lo que en
ese caso seria necesario definirlo entre comillas como miembro de un objeto
(Crockford, 2008).

Los valores que asociamos a los miembros de una clase pueden ser cualquier valor de
JavaScript, incluyendo arreglos literales como [1, 2, 3], funciones u otros objetos
(Crockford, 2008).

66

15.2. Estilo de codificacion preferido en JavaScript

15.2.1. Nomenclatura de archivos y directorios

Los nombres de archivos y directorios que forman parte de un repositorio de codigo
JavaScript deben apegarse al esquema snake_case. Se prefiere usar letras minusculas y
evitar guiones en medida de lo posible. Esta regla tiene la intencion de abstraer si un
servidor Web hace distincion entre mayusculas y minusculas en las URL de recursos
(Crockford, 2019).

15.2.2. Nomenclatura de identificadores en JavaScript
Los nombres de variables, funciones u otros identificadores de elementos de un
programa JavaScript siguen la convencién de nombrado camelCase (Crockford, 2019):

let unaVariable
function unaFuncion() { ... }

Existe una excepcidon pues las constantes se prefieren escribir en mayuscula,

separando palabras con guiones bajos (Crockford, 2019):
const UNA_CONSTANTE

La nomenclatura en JavaScript sigue las convenciones de nombrado en Java. Como en
muchos otros lenguajes se prefieren usar nombres alfanuméricos (no incluir simbolos
en el nombre) y utilizar unicamente caracteres ASCIll-compatibles, otros pueden
generar problemas (Crockford, 2019).

let contrasefia // No use caracteres no ASCII-compatibles

let password // alternativa a “contrasena”
let contrasegna // otra posible alternativa

let contrasena // es mejor que usar fn, & u otros caracteres no disponibles en ASCII

15.2.3. Sangria (indentacién) y separaciéon de bloques de cédigo

Como en muchos otros lenguajes, se prefiere utilizar espacios en lugar de tabuladores
para el sangrado (indentacién). En JavaScript es comun utilizar sangrias de 2 o 4
espacios (no tabulaciones), ambos son aceptables pero debe ser consistente en un
mismo repositorio: si el proyecto usa sangrias de 2 espacios, entonces todos los scripts

en el repositorio deben apegarse a esa convencion.
67

La demarcacion bloques de codigo con { ... } emplea la misma convencion de
codificacion que Java, en la que el corchete que inicia el bloque { se escribe en la
misma linea que la definiciéon del bloque de cddigo y el corchete que lo cierra } debe
aparecer como el unico caracter visible en la linea donde se escriba, con el mismo

sangrado que la linea donde inicia el bloque que cierra (Crockford, 2019):

function () {
swgéch O {
) .

}

Cuando se define un objeto, arreglo o funcién empleando varias lineas, se prefiere dejar
el paréntesis o corchete que inicia la definicion de miembros o parametros como el
ultimo elemento de la primera linea de la definicion, las siguientes lineas listan los
miembros o parametros, la ultima linea de la definicion del objeto, arreglo o funcion

contiene el paréntesis que cierra la definicién (Crockford, 2019).

Las lineas de miembros o parametros deben tener un nivel de sangria mayor que la
primera linea de la definicién, mientras que la linea final con el cierre de la definicion

debe tener el mismo nivel de sangria que la primera linea (Crockford, 2019):

function funcionLarga (
paraml, param2, param3
) {
let objeto = {
miembrol: valorl,
miembro2: valor2,
miembro3: [
valor3_1, valor3_2, valor3_3
]
}
}

A menos que un operador unario sea una palabra, como typeof, el resto de los
operadores unarios deben aparecer sin separacion del valor o variable sobre la que
tienen efecto (Crockford, 2019):

typeof 5 // operador unario que es una palabra, se separa del valor

68

-5 // operador unario que es un simbolo, sin espacio con el valor
Los operadores no-unarios deben separarse de sus operandos con un espacio, excepto
los operadores de acceso (punto y corchetes) (Crockford, 2019):

2 + 2 // operador no-unario, se separa con un espacio de sus operandos
arreglo[@] // operador no-unario de acceso, sin espacio con sus operandos

Después de una coma (por ejemplo en una lista de parametros o miembros de un
arreglo) debe aparecer un espacio en blanco o un salto de linea, el uso de espacios o
saltos de linea en una misma lista debe ser consistente (Crockford, 2019).
Math.max(1,

2,

3)
(1, 2, 3, 4, 5]
En una clausula swtich no se sangran los encabezados de sus casos, pero se sangra el
contenido de los casos (Crockford, 2019):
switch (condicion) {
case expresionl: // encabezado de caso, sin sangrar

<bloque con sangrado>

case expresion2: // encabezado de caso, sin sangrar

<bloque con sangrado>

default: // encabezado de caso, sin sangrar
<bloque con sangrado>

}

15.2.4. Comentarios

Los comentarios deben apegarse a principios de codigo limpio: no agregar comentarios
obvios, tautolégicos o redundantes. Evite comentarios como (Crockford, 2019; Martin,
2008):

// devuelve true

function returnsTrue() {
return true

}

No solo el nombre de la funcion clarifica su comportamiento, sino que el cuerpo de la
funcion permite entenderlo facilmente. Use comentarios para ilustrar el disefio de
mecanismos complejos, exhibiendo decisiones de disefio que el cddigo no transmita

directamente (Martin, 2008).
69

Por otro lado los comentarios de bloque en JavaScript comparten caracteristicas con la
sintaxis de expresiones regulares, por lo que se prefiere evitarlos y usar siempre
comentarios de una sola linea (vea la seccion 11.2), aun si es necesario iniciar varios

bloques de comentarios para hacer una descripcion completa (Crockford, 2019, 2008).

Ejemplo de uso de comentarios multi-linea

// Memoiza resultados en el objeto “resultados”
// Note que cada vez que se llama a la funcidén con un parametro ‘a’ diferente,
// la funcidén maneja una memoria en el objeto “resultados”
// que depende del parametro €a’
function elevaYRecuerda(a) {
var resultados = {}
return function(n) {
if (!resultados[a]) {
resultados[a] = {}

}
if (!resultados[a][n])
resultados[a][n] = Math.pow(n, a)

}

return resultados[a][n]

}
}

15.2.5. Paréntesis, corchetes y bloques de cédigo
Se prefiere separar palabras clave como if, while 0 switch del paréntesis que le sigue
por un (y solo un) espacio en blanco (Crockford, 2019):

if (condicién) { ... }
for (<inicializacién>; <condicién>; <incremento>) { ... }

En el caso de llamadas de funciones se prefiere que el nombre de la funcion y los
paréntesis con sus argumentos aparezcan juntos, sin separar (Crockford, 2019):

string.trim()
number.valueOf()

Al crear objetos y arreglos se prefiere usar literales en lugar de constructores
(Crockford, 2008).

let objeto = {
miembro : €‘valor’

}
let arreglo = [

1, 2, 3
70

]

15.2.6. Sentencias

En cada linea de codigo debe haber unicamente una sola sentencia. JavaScript inserta
punto y coma (;) al final de una linea automaticamente cuando lo determine necesario.
Por esto en algunos repositorios se prefiere evitar usar punto y coma del todo, mientras
que en otros se prefiere terminar todas las sentencias con punto y coma. Cualquiera de
las dos convenciones es aceptable, pero debe ser consistente en todo el repositorio de

un proyecto (Crockford, 2008).

La extension de una linea de cédigo no deberia ser mayor a 80 o 120 caracteres como

se prefiere en muchos entornos de codificacién (Crockford, 2019).
16. Inspectores de cédigo y pruebas automaticas de software

16.1. Actividades de control de calidad en procesos Agiles
En un proyecto Agil es posible prescindir de roles explicitos de Control de Calidad si se
agregan las tareas de este rol a las tareas de codificacién. En un proyecto Agil estas

tareas incluyen (Martin y Martin, 2007):

e Refactorizacion. Consiste en modificar el cédigo sin alterar su comportamiento
buscando que tenga una estructura clara, eficiente, escalable y mantenible. Cada
vez que se trabaja con una porcion del cédigo, se recomienda refactorarlo para

mejorarlo.

e Integracién continua. Al integrar los cambios producidos durante una iteracion,
es importante revisar los cambios para validar que cumplen con su
especificacion en el diseno, de manera que la version del producto en

construccién implemente sus caracteristicas de forma adecuada.

e Reuniones al inicio o final de las iteraciones. Las reuniones de inspeccion de
las iteraciones buscan discutir el progreso y dificultades que hayan tenido los

integrantes del equipo, estas discusiones permiten esclarecer la interpretacién de

71

las caracteristicas del producto y ademas pueden incluir actividades de revision

de cadigo.

16.2. Inspectores de codigo automaticos

Existen herramientas que ayudan a comprobar la calidad de un cdédigo de manera
automatica. Se basan en las reglas y convenciones de codificacién del lenguaje para el
que estan disefadas. Estas herramientas se denominan linters. Los linters asisten en la
unificacion del estilo de codificacion y la aplicacion de convenciones de manera

uniforme en un repositorio de software (DelBono, 2016).

De esta manera las revisiones se pueden enfocar en la funcionalidad que implementa el
codigo, ademas el codigo deberia ser legible por todos los desarrolladores que usen el

mismo lenguaje y plataforma de trabajo (DelBono, 2016).

En JavaScript se cuenta con el linter ESLint, que esta disefado para trabajar con
NodedS.

https://eslint.org/

16.3. Pruebas automaticas de software

En varias metodologias Agiles los requerimientos se definen a partir de descripciones
de alto nivel proporcionadas por los clientes o usuarios. En etapas tempranas del
disefio del producto basta con contar con una descripcién general de los casos de uso
(particularmente desde el punto de vista del usuario) y entender como realiza sus

actividades para definir funcionalidades en torno a ellas (Martin y Martin, 2007).

Estas descripciones de requerimientos de alto nivel pueden emplearse para definir
pruebas de aceptacion en colaboracion con el cliente o usuarios. Estas pruebas de
aceptacion suelen implementarse en codigo en un repositorio o sub-repositorio del
proyecto, este cddigo no forma parte del producto del proyecto, pero valida que las
caracteristicas que se integran en el satisfacen su especificaciéon (Martin y Martin,
2007).

72

https://eslint.org/

La definicién de estas pruebas suele ser llevada a cabo por analistas del negocio y por
roles relacionados al control de calidad. La estructura de este entorno de pruebas se
configura de manera que las pruebas son automatizadas, permitiendo que los
desarrolladores puedan validar sus productos de trabajo facilmente al ejecutar las

pruebas definidas en el proyecto (Martin y Martin, 2007).

Si los productos de trabajo de los desarrolladores satisfacen las pruebas de las
caracteristicas que deben desarrollar, ademas de las pruebas que ya terminaban con
exito anteriormente, entonces estos productos de trabajo pueden ser integrados en el

producto del proyecto en construccion (o modificaciéon) (Martin y Martin, 2007).
17. Servicios y bibliotecas que integran a NodeJS como plataforma de ejecucion

17.1. Introduccién a NodeJS

NodedS es una plataforma de ejecuciéon basada en JavaScript, toma la filosofia de
ejecutar tareas en un unico hilo para implementar un servidor sin bloqueo, sin hilos que
deban esperarse unos a los otros. La filosofia de NodedS es que las peticiones hechas
a un servidor Web hecho en JavaScript no pueden interactuar ni generar

inconsistencias entre si (DelBono, 2016).

NodedS fue adoptado rapidamente por una amplia comunidad que incluye entusiastas y
varias de las mas grandes empresas de tecnologia digital, como Microsoft e IBM. Como
resultado NodeJS cuenta con un enorme catalogo de bibliotecas, extensiones, soporte

y recursos para desarrollar servidores Web (DelBono, 2016).

17.1.1. Configuracion del entorno de ejecucion

Dependiendo del entorno de desarrollo que emplee, puede obtener NodedS en su sitio
Web en variantes para Microsoft Windows, Apple MacOS y el cddigo fuente para su
compilacién en otras plataformas. Muchas distribuciones Linux cuentan con paquetes

para instalar y usar NodeJS sin necesidad de compilarlo.

Una vez que haya instalado NodeJS puede usar el comando node para iniciar una

terminal interactiva donde puede interpretar codigo JavaScript utilizando componentes

73

de NodedS. También puede llamar node con un script *.js como argumento para
ejecutarlo. Esta ultima es la estrategia preferida para iniciar aplicaciones Web hechas
con NodeJS.

17.1.2. Caracteristicas de NodeJS
A partir del disefio de NodeJS se han desarrollado varias caracteristicas que en parte

heredan del entorno de ejecucion de JavaScript (DelBono, 2016).

Arquitectura basada en eventos

Las funciones en un servidor hecho con NodedJS suelen estructurarse para ser llamadas
por eventos en lugar de ser llamadas directamente. E/ flujo de ejecucion de un servidor

NodeJS depende de acciones externas y de esperar por respuestas.
Un solo hilo de ejecucion

Los servidores NodeJS se ejecutan en un unico hilo que no depende de otros hilos en

marcha.
Entrada y Salida sin bloqueo

La arquitectura basada en eventos de NodeJS es general. Esto incluye eventos de
entrada y salida. Por ejemplo, mientras el servidor “espera” respuestas por red o de un
archivo, NodeJS no implementa una espera ociosa en la que el servidor espera en un
bucle a que la operacion termine de ejecutarse, sino que encola un evento que espera

la finalizacion de la operacion, manteniendo el servidor disponible.

17.2. Disenando con el Ciclo de Eventos

Como hemos visto NodedS funciona con un solo hilo de ejecucién que encola
actividades que toman tiempo (como Entrada/Salida) y las ejecuta en cuanto es posible.
Esto significa que debemos tener precaucién al definir instrucciones que se ejecutan en
el servidor. Debemos emplear herramientas que nos permitan delegar operaciones de
segundo plano cuando sea necesario y limitar el servidor a inspeccionar y construir

respuestas de peticiones Web (DelBono, 2016).

74

Para esto NodeJS utiliza un Ciclo de Eventos que permite encolar tareas mediante un

grupo de hilos preparado por el Sistema Operativo anfitrion. Al codificar un servidor con

NodeJS no es necesario manipular o interactuar directamente este grupo de hilos, en

su lugar NodedS emplea cerraduras (closures) que implementan la accion a ejecutar en
el Ciclo de Eventos (DelBono, 2016).

En un servidor NodedJS encontraremos la mayor parte del codigo escrito en closures

(DelBono, 2016). La figura 9 representa el Ciclo de Eventos de NodeJS.

La insercion de eventos
puede ser por orden de
llegada, o puede encolar
eventos priontarios a
ejecutar en la siguienta
ronda inmediata sin
esperar

Cola de eventos

Evento A
(‘'nombre’, funcidn callback)

Evento B
('nombre’, funcion callback)

Evento C
('mombre’, funcidn calfback)

=

Evento en ejecucion
(Ejecuta la funcidn callback)

/

<

Toma el siguiente evento en la cola

Figura 9. Representacion del Ciclo de Eventos de Nodels,

Estos closures o eventos de respuesta (callbacks) suelen definirse como funciones

anonimas dentro de controladores. Se ejecutan de manera asincrona y reciben dos

parametros (DelBono, 2016):

e err — Objeto con errores que hayan ocurrido al obtener los datos requeridos por

esta funcién. Por ejemplo, si se habia solicitado leer un archivo este objeto

contendra informacion respecto al porqué no se pudo recuperar el archivo o su

contenido. Por convencion el error es el primer parametro de un evento de

respuesta.

e data — Los datos requeridos por la funcion. Siguiendo el ejemplo anterior, si se

habia solicitado leer un archivo data contendra la informacion del archivo.

75

17.3. Moébdulos

Para permitir un mayor control sobre los alcances y dominios entre dependencias y
componentes de un servidor NodedS (pese a la estructura de alcances potencialmente
globales de JavaScript), se utiliza el objeto module.exports en el que se definen los
atributos y funciones “publicas” que se desean exponer de un script a otros
componentes (0 dependencias). El contenido de module.exports que declara un script

recibe el nombre de médulo (DelBono, 2016).

Las dependencias y componentes de un servidor NodeJS se agrupan y distribuyen en
moddulos (DelBono, 2016).

Ejemplo de médulo con NodeJS

module.exports = {
atributoEjemplo: 42,
funcionEjemplo: (<parametros>) => {
<contenido de la funciédn>

}s

<puede definir mas atributos/funciones como parte del mdédulo>

}

Para emplear los miembros definidos en el médulo en otro script:

const moduloEjemplo = require(‘./modulo_ejemplo.js”’)
let resultado = moduloEjemplo.funcionEjemplo(<parametros>)

17.3.1. Importando dependencias

Para traer dependencias a un script se usa la funcion require que toma una cadena con
el nombre de una dependencia del proyecto o una ruta de archivo (absoluta o relativa).
require devuelve el objeto module.exports definido en el script que se le indique como

parametro (DelBono, 2016).

Es importante usar notacién de ruta siempre que queramos importar un componente y
no una dependencia (administrada por npm). Si la cadena que se le provee a require no
tiene formato de ruta, NodedS intentara buscarla en el directorio node_modules que
contiene las dependencias del proyecto (administradas por npm). Cuando se le pasa
una ruta, interpreta el script en la ruta dada (por lo que es indispensable proveer rutas a

scripts existentes) (DelBono, 2016).
76

Los scripts se comportan como singleton: para optimizar el desempefo se guarda la
interpretacion del script en un caché y cada vez que el script sea requerido por otros
scripts del servidor NodedJS, recibiran la misma referencia. Esto significa que cualquier
inicializacion o variable en el modulo deben ser disefiados para ejecutarse una sola vez,
y el acceso a las variables deberia ser protegido con estrategias como geftters y setters

(métodos de acceso y modificacion) (DelBono, 2016).

17.4. Node Package Manager’ — npm
npm es el gestor de paquetes utilizado en proyectos NodedS. Cuenta con un extenso
catalogo de paquetes que contienen versiones especificas de dependencias. Para

instalar un paquete se usa el comando (DelBono, 2016):

npm install <nombre del paquete>

Los paquetes instalados por npm son depositados en el directorio node_modules, donde

require busca dependencias por nombre (DelBono, 2016).

17.4.1. Express
Express.js es un marco de trabajo para desarrollar aplicaciones Web con NodeJS.
Express abstrae algunos aspectos de NodeJS que permiten acelerar la implementacion

de este tipo de aplicaciones (DelBono, 2016).

17.4.2. Creando un repositorio de proyecto de Aplicacién Web

Las funcionalidades de gestién del proyecto de npm van mas alla de la gestion de
dependencias. También nos ayuda a inicializar el repositorio del proyecto y actualizar su
descripcion con las dependencias que se instalen. La configuracion del proyecto se
realiza en un archivo llamado package.json que describe entre otros aspectos: el nombre

del proyecto, version y dependencias (DelBono, 2016).

2 Aunque en las primeras versiones de NPM se usaba el nombre “Node Package Manager” y ser el
nombre con el que lo identifican muchos de sus usuarios, actualmente los gestores del proyecto
insisten que NPM no es un acrénimo, sino una definicion recursiva (NPM is Not an acronym).

77

Para crear una plantilla de proyecto NodedS con su archivo package.json base, es
recomendado primero crear un directorio vacio con el nombre tentativo de la
aplicacién/proyecto. Luego en el directorio del proyecto se usa el comando (DelBono,
2016):

npm init

npm hace una serie de preguntas para definir meta-datos del proyecto, como el nombre
del paquete, version y otros meta-datos en el archivo package.json. Lo siguiente que se

hace es instalar Express en el repositorio recién creado (DelBono, 2016):
npm install express

Esto crea el directorio node_modules en el repositorio, en el que encontraremos los
componentes de Express. También se actualiza el archivo package.json con el registro
de la dependencia y version instalada. El siguiente paso es distribuir el repositorio con

el equipo de trabajo, para ello puede emplear un Manejador de Versiones como git.

El manejo de versiones de un proyecto NodedS suele excluir el seguimiento del
directorio node_modules puesto que de esta manera se pueden crear versiones del
proyecto que emplean dependencias diferentes (al menos en su versién), o alternativas
que eventualmente pueden convertirse en parte de la version de lanzamiento. El

seguimiento de versiones con Git en repositorio se inicializa con el comando:
git init

El siguiente paso es configurar el gestor de versiones para que ignore el directorio
node_modules, también puede agregar patrones de nombres de archivos y directorios de
cache, depuracion y configuracidn, como .cache, *.log, .npm, .env* y .DS_Store. Esto
evita que los registros de depuracién o caché consuman recursos del repositorio de

versiones y previene conflictos entre entornos de ejecucién, prueba o de trabajo.

En el caso de git esto se hace escribiendo estos nombres o patrones de nombre en un

archivo llamado .gitignore, colocando cada nombre o patron en una linea del archivo.

78

Finalmente solo queda queda agregar el estado inicial del repositorio al seguimiento de

estado actual del repositorio. Con git se hace:
git add .
Y se registra la version inicial del proyecto:

git commit -m “Inicializando repositorio de aplicacién Web NodelS”

17.4.3. Separando dependencias del producto de las de desarrollo

En un proyecto de software en general es comun que el repositorio incluya
componentes del producto y componentes de desarrollo, como entornos de prueba,
migraciones entre versiones de modelos y base de datos, entre otros. Es posible
separar las dependencias del producto de las de desarrollo mediante el archivo de
configuracion package.json. npm también ofrece gestionar estos dos grupos de

dependencias por separado.
Al usar el comando:
npm install <nombre del paquete>

npm asume que se agrega una dependencia del producto, por lo que de forma implicita
se esta agregando la bandera --save-prod al comando. Para explicitar que se agrega

una dependencia de desarrollo, se debe usar la bandera --save-dev (DelBono, 2016):
npm install <nombre del paquete> --save-dev

Por ejemplo puede agregar la dependencia jest, que es un entorno de pruebas

automatizadas para JavaScript:
npm install jest --save-dev

De esta manera jest es registrado como una dependencia de desarrollo y no forma

parte del producto.

79

17.5. Bibliotecas y servicios de NodeJS

17.5.1. Emisores de eventos

Una manera de interactuar con el Ciclo de Eventos (vea la figura 9) para definir
funciones que se encolan en el Ciclo, es usando Emisores de Eventos. Para ello se
debe importar events de los componentes de NodeJS e indicar el nombre de un evento
y su funcién asociada que sera encolada para su ejecucion en el Ciclo de Eventos
(DelBono, 2016).

const EventEmitter = requiere(‘events’).EventEmitter
let emitter = new EventEmitter()
emitter.on(‘nombre-del-evento’, <funcién>)

Para encolar una operacion asociada a ‘nombre-del-evento’, simplemente se solicita

emitir un evento, con los parametros que requiera la funcion (DelBono, 2016):

emitter.emit(‘nombre-del-evento’, <parametros de la funcidén asociada al evento>)

Si se asocia el evento directamente con la funcion de respuesta, el comportamiento
sera sincrono, en cuando se llama a emitter.emit NodeJS ejecuta la funcion del evento.
Si se espera que el evento sea llamado de forma consecutiva, es mejor configurarlo con
una estructura asincrona que evite apropiarse del tiempo de ejecucion del Ciclo de
Eventos. Para esto, se puede envolver la funcidén de evento en la funcidn setImmediate()
(DelBono, 2016)

const EventEmitter = requiere(‘events’).EventEmitter

let emitter = new EventEmitter()

emitter.on(‘nombre-del-evento’, <parametros del evento> => setImmediate(
() => <funcidon, sus parametros se alcanzan desde la funcidén externa>)

)

setImmediate() encola la funcién que tiene como parametro en el Ciclo de Eventos, pero
no como el siguiente evento a ejecutar, sino al final de la lista de todos los eventos por
ejecutar. Esto permite la implementacién asincrona y evitar apoderarnos del tiempo de

ejecucion del servidor (DelBono, 2016).

Es importante no confundir setImmediate() con nextTick(), este ultimo encola eventos
para ser ejecutados tan pronto como termine de ejecutarse el evento actual en el Ciclo
80

de Eventos, por lo que nextTick() suele usarse principalmente con eventos de alta

prioridad (vea la figura 9) (DelBono, 2016).

17.5.2. Promesas ECMAScript v6

En la sexta version del estandar que gobierna la implementacion de JavaScript se
introdujo el objeto Promise. Estas Promesas comparten la filosofia de ejecucion
asincrona de NodedS, se ejecutan en un Ciclo de Eventos (vea la figura 9) y permiten
encadenar resultados. Las Promesas usualmente se definen dentro de una funcion que
lo unico que hace es devolver la Promesa. El constructor de Promise toma una funcion
que recibe dos parametros, los cuales son funciones provistas por el entorno de

ejecucion (DelBono, 2016):

e resolve — Se usa para indicarle al servidor el resultado de la ejecucion de la

promesa para ser devuelto al cliente Web (front-end).

e reject — Se usa para generar una respuesta de error cuando la ejecucion de la
promesa no se pueda completar. La respuesta de error se envia al cliente Web

(front-end).

El alcance de funcién y cerraduras que definen las funciones de JavaScript motivan que
la funcidn contenedora de la Promesa sea quien recibe los parametros que requiere la
funcién a ejecutar asincronamente la promesa, por lo que la funciéon contenida en el
constructor de Promise unicamente recibe los dos parametros anteriores (DelBono,
2016).

function miFuncion(<parametros>) {
return new Promise((resolve, reject) => {

<implementacidén de los mecanismos de “miFuncion” con los parametros dados>

if (error) {
// error representa una validacién sobre los resultados generados
// o la disponibilidad de recursos para generarla (como acceso a la BD)
reject(error)
// pasa un objeto con el error a reject

} else {
resolve(data)
// data representa el resultado de la promesa que se devuelve al cliente

}
1)

81

}

También es posible encadenar una secuencia de promesas. Esto permite reusar codigo
o definir componentes modulares. Para ello basta con usar el método then al invocar
una promesa. then recibe como parametro una funciéon que recibe el resultado de la
promesa sobre la que fue invocado. El resultado de la promesa es el objeto que se le

pase a resolve (DelBono, 2016).

function otraFuncion(<parametros>) {
return new Promise((resolve, reject) => {
miFuncion(<pardmetros>).then(resultado => {
// Si la ejecucidén de la promesa del ejemplo anterior no tiene problemas,
// genera resultado con resolve
}).catch(error => { // si la promesa del ejemplo anterior termina en reject
return reject(error) // se ejecuta este catch en lugar del then anterior

1)
})

}

18. Definicion de rutas (end-points)

18.1. Configuracién general de una aplicacién Web con NodeJS

Aunque es posible construir una aplicaciéon Web utilizando el modulo http de NodedS,
existen varias bibliotecas y marcos de trabajo que ofrecen herramientas para construir
aplicaciones ricas en funcionalidad con menor esfuerzo. Uno de los marcos de trabajo

mas populares para esto es Express (DelBono, 2016).

La implementacién de una aplicacién Web con Express comienza con la definicién de
un script de configuracion general que indica: las rutas y verbos HTTP a los que
responde la aplicacion, los comportamientos en caso de errores y la escucha de

peticiones por algun puerto especifico de red (vea la figura 10) (DelBono, 2016).

El nombre por convencion que se le da a este archivo de configuracion general es
server.js (DelBono, 2016). El siguiente es un ejemplo de archivo de configuracion

server.js Minimo:

const express = require(‘express’) // se importa el marco de trabajo Express

const app = express() // se crea una aplicacidn Express-NodelS

app.get(‘/’, (peticion, respuesta) => { // se define una ruta con verbo GET
respuesta.send(‘Hola Mundo’) // se genera una respuesta a la peticiodn

82

1)

app.listen(8000, () => { // se arranca el servidor
console.log(‘Iniciada app de ejemplo que escucha por el puerto 8000°)

1)

Note en el ejemplo que esto no incluye la definicion de mensajes de error (por ejemplo,
cuando el cliente intenta consultar una ruta no definida -error 404-, o cuando el servidor

no puede procesar una peticion valida -error 500-), se limita a definir una Unica ruta </°.

Si se desean definir mas rutas, este archivo creceria rapidamente complicando su
lectura y mantenimiento. Por esto es mejor definir rutas y respuestas a errores en
scripts diferentes, ademas pueden ser agrupados en el repositorio de maneras

convenientes.

18.2. Definicion de ruteadores

Una aplicacion Web ofrece funciones expuestas por diferentes rutas y verbos HTTP en
el (los) servidor(es) de la aplicacion como se ilustra en la figura 10. Mantener todas
estas rutas en el archivo de configuracién del servidor server.js es poco practico, en
primer lugar es posible que exista un gran numero de rutas y muchas de estas rutas
pueden estar asociadas a mecanismos relacionados que pueden agruparse en scripts
de rutas cohesivas que permiten una facil identificacion de los Controladores que

involucran.

Por ejemplo es posible agrupar todas las rutas que procesan altas, bajas y cambios en
usuarios, separandolas de las rutas que exponen funcionalidades respecto a otros

modelos o caracteristicas de la aplicacion.

express proporciona el objeto Router que permite definir rutas de la aplicacion(DelBono,
2016).

Ejemplo de ruteador general con Express

Considere el siguiente ruteador general para una aplicacién llamado ./rutas/web.js

83

Descripcion de rutas que exponen

las funciones del servidor Web
Los ruteadores llaman las funciones

del servidor de acuerdo con la(s) -
ruta(s) que tiene(n) asociada(s).

GET
{
Portal principal

GET
fusuarios/:id
Consulta de usuario

VAN

POST
fusuarios!id/:;nombreapellido
Alta de usuario

Servidor Web Ruteadores

A

VA NVANDZAN

PUT
lusuarios!id/-nombre/-apellido
Maodificacion de usuario

DELETE
fusuarios/:id
Baja de usuario

o

Figura 10. Ejemplo de rutas que expanen las funciones de un servidor Web.
Mote que las rutas pueden usar la misma URL con verbos HT TP diferentes.

const express = require(‘express’)

const router = express.Router()

// se importan los controladores necesarios, por ejemplo

const controladorUsuarios = require(‘../controladores/usuario.js’)

// definicién de rutas, note que se indica el verbo HTTP (.get, .post) y ruta

// En este caso el portal principal de la aplicacidn

router.get(/’, (peticion, respuesta) => {
respuesta.render(‘index.ejs’, {})

)

// use los controladores para responder a las peticiones cémo sea necesario

router.get(“/users’, (peticion, respuesta) => {
controladorUsuarios.mostrarTodos(peticion, respuesta)

b

router.post(‘/users/registrar’, (peticion, respuesta) => {
controladorUsuarios.registrarNuevo(peticion, respuesta)

1)

module.exports = router

En el archivo de configuraciéon general de la aplicacién server.js solo es necesario

importar este archivo de rutas y asociarlas con la aplicacion express, indicando el prefijo

84

de rutas al que responde el ruteador. En este ejemplo ./rutas/web.js es el ruteador
general de toda la aplicacion, por lo que su prefijo es vacio (/):
const express = require(‘express’)

const rutas = require(‘./rutas/web.js’)
const app = express()

app.use(¢/’, rutas)

18.2.1. Parametros en la ruta

Una URL (Localizador Uniforme de Recursos — Uniform Resource Locator) puede
contener parametros y/o un fragmento al final (consulte la estructura de una URI en la
figura 5, seccion 1.5.1). Los parametros de la URL son una serie de claves-valores que
aparecen después de la ruta del recurso en el mensaje HTTP antecedido por el caracter

? y separados entre ellos por & (Kurose y Ross, 2013; Nottingham, 2020).
<protocolo>://<nombre de dominio>/<ruta>?paraml=valorl¶m2=valor2

Estos parametros suelen emplearse para completar informacion para la respuesta de la

ruta y verbo HTTP solicitados, por ejemplo pueden usarse para realizar busquedas.

Al final de una URL con o sin parametros también puede aparecer un fragmento, que es
un texto antecedido por el caracter #, suele usarse para indicar algun comportamiento
particular de la ruta solicitada, por ejemplo que la pantalla se desplace a una seccién

del contenido automaticamente (Nottingham, 2020).
<protocolo>://<autoridad - nombre de dominio>/<ruta>[?parametros]#fragmento

En NodedS es posible definir rutas con elementos variables mas alla de los parametros
y fragmentos. La definicién de rutas en el ruteador puede incluir nombres de recursos
que inician con dos puntos “:”. Este caracter no es valido como nombre de archivo
(inodo) en muchos sistemas de archivos, por lo que encontrar una ruta como

/usuarios/:id no tiene sentido como identificador de recurso (DelBono, 2016).

Los recursos con el prefijo “:” representan variables. El ruteador abstrae cualquier valor
que se haya proporcionado en estos :identificadores con una variable homdnima para

procesar la peticion. El primer parametro que recibe la funcién asociada a una ruta,

85

usualmente llamado request O peticion, posee un atributo params que es un objeto que

contiene el valor de los parametros en la ruta (DelBono, 2016).

Ejemplo de definicion de rutas parametrizadas con Express

app.get(‘/usuarios/:nombre/:apellido’, (peticion, respuesta) => {
let nombre = peticion.params.nombre
let apellido = peticion.params.apellido
respuesta.send(Hola ${nombre} ${apellido})

})

La definicion de parametros dentro de la ruta es mucho mas claro que el manejo de
parametros al final de la URL. Puesto que cualquier URL puede incluir parametros y/o
un fragmento, para saber si una peticion utiliza parametros en la URL (y cuales son), es
necesario consultar la documentacion o revisar con detalle las funciones que atienden

la peticidn.

Al indicar parametros explicitamente en el ruteador dentro de la ruta, es claro que son
obligatorios y cual es su nombre, los parametros tradicionales en URL suelen
reservarse para parametros opcionales o que refinan el comportamiento de la funcién

asociada a la ruta.

18.3. Construccién de respuestas de mensajes HTTP
Los métodos para responder una consulta, response.json y response.send, pueden ser
encadenados con el método response.status para indicar el codigo de respuesta HTTP

que se requiere responder (DelBono, 2016).

respuesta.status(200).json(datos)
respuesta.status(404).send(‘texto’)

También puede agregar un encabezado al mensaje HTTP de respuesta a la peticion

con el método set (DelBono, 2016):
respuesta.set(nombreEncabezado, valorEncabezado).

Cuando la respuesta a una peticion crea un recurso, se debe indicar la URL del recurso

creado. Para esto se emplea el método respuesta.location(ruta) (DelBono, 2016).

86

Ejemplo de generacion de respuesta a una peticion Web con Express
app.post(‘/usuarios’, (peticion, respuesta) => {
const usuario = crearUsuario(peticion.body)

respuesta.location(” /ususarios/${usuario.id})
respuesta.status(201)

b

18.4. Definiciéon de respuestas de error

En el ruteador principal de la aplicacién se definen respuestas a los errores que puede
arrojar nuestra aplicacion. Los dos errores que suelen ser personalizados en la mayoria
de aplicaciones Web, son el error del cliente 404 — Recurso no encontrado, y el error

genérico del servidor, error 500.

Puede personalizar la vista del error 404 utilizando la pila de operaciones por la que el
servidor procesa la peticion. Esta pila de operaciones es un concepto empleado en
varios entornos Web, se ejemplifica en la figura 11. En NodedJS la siguiente operacion
en la pila se representa con un tercer parametro en la funcién asociada a una ruta. Este

tercer parametro suele denominarse next O siguiente en espafiol (DelBono, 2016).

Peticion Respuesta

N

Servidor Web

Recepcion de Middlewares Ruteador Middlewaras y Middlewares
Paticidn y genéricos de (determina las controladones genéricos de
generacion de entrada operacionas asociados al salida (sin ruta
instancia de (=in nuta que sequiran recurso aspecifiadal
Respuesta especificada) en la pila) solicitado

La peticidn no tiena una ruta
asociada

Figura 11. Esquema general de |a pila de operaciones de un servidor Web.
Las flechas azules representan la peticidn, note que es propagada hasta el ditimo evento
involucrado en la genaracion da su respuesta.
Las flechas rojas representan |a respuesta, note gue se consiruye desde el primer avento que
responde a la peticion.

También es posible definir instrucciones en la pila de operaciones no asociadas a una

ruta especifica. Estas operaciones se denominan middleware, suelen usarse para
87

validar peticiones como se presenta en la seccién 19.3. El orden de operaciones en la
pila de operaciones se basa en el orden de definicion de rutas en los ruteadores y en
Express. Por lo anterior, cuando desee asociar un middleware de respuesta de error
debe definirlo al final de todas las demas rutas, en otro caso el middleware tendra

efecto en todas las rutas que le siguen (DelBono, 2016).

Ejemplo de manejo de errores al procesar peticiones con middlewares
En el siguiente ejemplo se define un middleware que define un error en la pila de
operaciones, el cual es disparado cuando no exista una operacion en la pila asociada a
la ruta de peticion. ElI que no exista una ruta definida para la peticién, significa que el
cliente solicitd un recurso que no existe.
app.use((peticion, respuesta, siguiente) => {

let error = new Error('No encontrado')

error.status = 404
siguiente(error)

1)

El error 500 se puede definir mediante un middleware cuya funcidn asociada posee un
parametro adicional en la primer posicidn de sus argumentos. Este parametro contiene
un error del servidor y el middleware es invocado por NodeJS cuando alguna operacion
en la pila de operaciones encuentra un error o excepcion no controlada, este error o
excepcion se pasa al middleware como primer parametro (DelBono, 2016):
app.use((error, peticion, respuesta, siguiente) => {

if (respuesta.headersSent) return // error pudo ocurrir al construir una respuesta

respuesta.status(error.status || 500)

respuesta.json({

message: error.message,
error: error

1)
1)

Note que en el ejemplo el error se envia como respuesta, por o que sera mostrado al
usuario. Es recomendado definir al menos dos variantes del manejo de errores del
servidor cuya ejecuciéon depende del entorno de ejecucion, de manera que en entornos
de produccion los errores no se muestren explicitamente a los usuarios, pero se

muestren con detalle en entornos de prueba o desarrollo.

88

18.5. WebSockets

WebSockets es un estandar de comunicacion Web (basado en los protocolos
HTTP/HTTPS) en los que ambos participantes en la comunicacion actuan tanto como
cliente como servidor. Permite un mayor grado de interaccién entre el servidor y los
usuarios. Existen muchas bibliotecas para trabajar con WebSockets, en NodedS se

puede usar Socket.lO, disponible a través de npm (DelBono, 2016):
npm install socket.io

Puesto que con WebSockets ambas partes de una interaccion HTTP fingen tanto como
cliente y servidor es necesario definir rutas y peticiones tanto en el servidor como en las
vistas. En el servidor se puede definir un ruteador para WebSockets, es conveniente
agrupar los ruteadores del repositorio en un directorio comun, por ejemplo:
<repositorio del proyecto>

/rutas

web.js
sockets.js

Un ruteador de WebSockets en una aplicacion NodeJS posee la siguiente estructura
(DelBono, 2016):
const http = require(‘http’).Server(app)
const io = require(‘socket.io’)(http)
const controladorSockets = require(‘../controladores/controladorSockets.js’)
io.on(“connection’, socket => {
socket.on(‘nombre-evento’, controladorSockets.nombreEvento(datos))
// datos es el contenido del mensaje enviado por WebSocket

// es una cadena de formato arbitrario, en muchos casos se usa JSON.
// Puede definir mds eventos con llamadas adicionales a socket.on

1)

Del lado del cliente no suele ser conveniente definir un ruteador para todos los eventos
de WebSockets, ya que podrian contener referencias a caracteristicas que no son
accesibles desde cualquiera de las vistas de la aplicacion, pero el ruteador tendria que

ser enviado al cliente Web en todas las peticiones que puedan involucrar WebSockets.

A diferencia del servidor, donde el ruteador dispone del resto de los componentes

directamente, por cuestiones de desempefio de la aplicacion en ejecucion tanto en

89

clientes como en servidores y por cuestiones transferencia de datos por red, las vistas

unicamente deben cargar dependencias indispensables.

Por lo anterior del lado del cliente es mas conveniente definir scripts que procesan la
interaccion para cada vista con la que estan relacionados, limitando también el tamafio

de los scripts que carga cada vista.

Ejemplo de ruteador WebSockets para una vista Web (en navegador)

El siguiente script inicia la conexiéon de WebSockets y prepara una funcién que envia el
evento ‘nombre-evento’ al servidor (DelBono, 2016):

var socket = io.connect(urlServidor) // inicia la conexién con el servidor

// rutas de evento del servidor
socket.on(‘evento-enviado-servidor’, procesatEventoServidor(datos))

// funciones que procesan eventos enviados por el servidor
function procesaEventoServidor(datos) {

} cee

// funciones que disparan eventos que se envian al servidor
function disparaEventoAlServidor(contenido) {
let datos = {
ejemplo: ‘Soy un JSON’,
contenido: contenido

}

socket.emit(‘nombre-evento’, datos)

}

Note que io no esta definido en este script. Por medio del encabezado HTML/XHTML se
definen las dependencias de las vistas, en este caso debe incluirse la referencia a
Socket.lO. El orden en el que se definen las dependencias en vistas es importante, por
lo que Socket.IO debe aparecer antes que el script anterior. De lo contrario io seria una
variable no definida, la vista arrojaria errores y no se comportaria de la manera

esperada (DelBono, 2016).

<html>
<head>

<script src="/js/socket.io/socket.io.js” ></script>
<script src="/js/ejemploWebSockets.js” ></script>
</head>

</html>
0

19. Definiciéon de Controladores y Modelos

19.1. Modelos

Como se presenta en la seccidn 18.5 los componentes del servidor como el ruteador,
modelos y controladores, son separados en directorios que agrupan componentes de
manera cohesiva y a su vez pueden agruparse en subdirectorios conforme sea
conveniente. Los modelos suelen manejarse como dependencias de los controladores,
definiéndolos como objetos y aplicando el principio de encapsulacién con practicas de
JavaScript, de manera que los controladores no puedan manipular los modelos
arbitrariamente (Crockford, 2008; DelBono, 2016).

Recuerde que en JavaScript los atributos de un objeto no son publicos ni privados, sino
que se emplean cerraduras para crear espacios de memoria reservados (vea la seccion
14.4) (Crockford, 2008; DelBono, 2016).

Ejemplo de un modelo simple de usuario

module.exports = (idUsr, nombreUsr, apellidoUsr) => {
let id = idUsr.valueOf()
let nombre = nombreUsr.valueOf()
let apellido = apellidoUsr.valueOf()
return {
obtenerId: () => {
return id
¥
obtenerNombre: () => {
return nombre
¥
obtenerApellido: () => {
return apellido
¥
toString: () => {
return ~${nombre} ${apellido}"
}
}
}

El modelo de usuario definido en el ejemplo anterior posee tres atributos: un
identificador (id) un nombre de pila (nombre) y un apellido (apellido). Cuando se
instancia este modelo, se copia el valor del identificador, nombre de pila y apellido

provistos y devuelve la instancia del modelo.

91

Los valores de los atributos de la instancia no pueden ser modificados (el objeto no
define métodos de modificacién para ninguno de los atributos), unicamente pueden ser
consultados por separado (usando los métodos de acceso o lectura para cada atributo)

0 en una representacion textual (definida por el método tostring).

19.2. Controladores
Los controladores son componentes de un servidor Web que reciben peticiones Web y

construyen una respuesta de acuerdo con el contenido de cada peticion que procesan.

Ejemplo de un controlador simple

El siguiente controlador utiliza el modelo del ejemplo anterior para atender peticiones
que procesan acciones sobre los usuarios que describe el modelo (DelBono, 2016;
Fowler, 2003):

const modeloUsuario = require(‘../modelos/usuario.js’)
var usuarios = {}
module.exports = {
crearUsuario: (peticion, respuesta) => {
if (usuarios[peticion.params.id]) {
respuesta.status(409).json({
name: €ID de usuario repetido’,
message: " Ya existe el usuario con ID ${peticion.params.id}"

1}

return

}

usuarios[peticion.params.id] = modeloUsuario(
peticion.params.id, peticion.params.nombre, peticion.params.apellido

)
let urlNuevoUsuario = " /usuarios/${peticion.params.id}"
respuesta.status(201).send(urlNuevoUsuario)

¥

borrarUsuario: (peticion, respuesta) => {
delete usuarios[peticion.params.id]
let urlUsuarioBorrado = " /usuarios/${peticion.params.id}"
respuesta.send(urlUsuarioBorrado)
¥
obtenerUsuario: (peticion, respuesta) => {
if (lusuarios[peticion.params.id]) {
respuesta.status(404).json({
name: €‘Usuario inexistente’,
message: "No existe el usuario con ID ${peticion.params.id}"

1)

return

}

let usr = usuarios[peticion.params.id]
92

respuesta.send(usr.toString())

}
}

El controlador se emplea en el ruteador para asociar las peticiones entrantes de

acuerdo a la ruta a la que apunta cada peticién (DelBono, 2016):

const controladorUsuarios = require(‘./controladores/usuario.js’)
router.post(“/usuarios/:id/:nombre/:apellido’, (peticion, respuesta) => {
controladorUsuarios.crearUsuario(peticion, respuesta)

1)

router.delete(“/usuarios/:id’, (peticion, respuesta) => {
controladorUsuarios.borrarUsuario(peticion, respuesta)

)
router.get(“/usuarios/:id’, (peticion, respuesta) => {
controladorUsuarios.obtenerUsuario(peticion, respuesta)

}

19.3. Middleware

En el ejemplo anterior aparecen diferentes rutas asociadas a operaciones relacionadas,
operaciones sobre el registro de usuarios. Esta es una situacion comun, particularmente
respecto a la validacion de las peticiones, el proceso de verificar que el contenido de la

peticion es adecuado conforme a las precondiciones del controlador asociado a la ruta.

A través del manejo de sesiones para las peticiones pueden distinguirse tipos de
usuarios, por ejemplo usuarios sin sesion, que suelen tener acceso a funciones
limitadas como consultar informacién general o crear una cuenta, y usuarios registrados
que tienen acceso mayor o total a las funciones de la aplicacién. Entre usuarios
registrados también puede haber varios roles, como usuarios en un plan gratuito y
distintos roles de usuarios con mayores privilegios por planes de suscripcion,

programas de recompensa o lealtad.

Para validar una sesion en cada peticion entrante al ruteador, determinando si debe
proceder al controlador respectivo o devolver un error 4XX puede usar middlewares.
Por ejemplo, el error 401 se usa para indicar que una ruta requiere una sesién y el 403
indica que se conoce la identidad del usuario pero no posee permisos para acceder al

contenido solicitado (vea la seccion 1.5.2) (DelBono, 2016).

93

Ejemplo simplificado de middleware que comprueba sesiones de usuario

function compruebaPermisos(peticion, respuesta, siguiente) {
// comprobamos permisos con la informacién en la peticidn
// el resultado se almacena en la variable local “ok”
if (ok) {
siguiente()
} else {
respuesta.status(401)

}
}

En los ruteadores se importan los middleware para asociarlos con rutas de la

aplicacion. Por ejemplo (DelBono, 2016):

const middlewareEjemplo = require(‘./middleware/middlewareEjemplo.js’)
const controladorEjemplo = require(‘./controladores/controladorEjemplo.js’)

router.get(€/users/:id’, middlewareEjemplo.compruebaPermisos,
(peticion, respuesta) => {

// note que el middleware se indica al deifinir la ruta
controladorEjemplo.obtenerUsuario(peticion, respuesta)

1)

Si desea que el middleware tenga efecto sobre un grupo de rutas, se agregan las
funciones sin asociarlas con una ruta antes que el resto de las rutas sobre las que se

desea que tenga efecto (DelBono, 2016):

app.use(middlewareEjemplo.compruebaPermisos)

Note que lo anterior implica que es posible definir middlewares globales, que tienen
efecto sobre todas las rutas que soporta el servidor, si se definen antes que cualquier

otra ruta.

Otra aplicacion de los middlewares es completar informacion en la peticién o

preprocesar la peticion antes de que la reciba su controlador objetivo (DelBono, 2016).
20. Elementos DOM

20.1. Representacion de HTML/XHTML en tiempo de ejecucion
Como se presenta en la seccion 3.2, cuando un navegador Web recibe un documento

HTML/XHTML debe interpretarlo y obtener un modelo que le permita visualizarlo

94

conforme a sus atributos y dependencias, ademas de exponer este modelo al entorno
JavaScript que permite manipular la vista al vuelo (seccién 11.1). Como se muestra en
la figura 7, los navegadores modelan estos documentos mediante un arbol en el que
cada nodo es un elemento del documento HTML/XHTML. Este modelo se denomina
Document Object Model (Modelo de Objeto del Documento — DOM) (Dean, 2019).

En DOM cada elemento del HTML/XHTML se representan con un nodo, los atributos de
cada etiqueta son sub-nodos hoja de los nodos-etiqueta, asi como el contenido textual y
elementos comentarios. El elemento raiz del arbol DOM es un miembro distinguido
llamado document, que suele tener un unico descendiente directo llamado html (Dean,
2019).

document representa la totalidad del documento HTML/XHTML y posee atributos
especiales, mientras que html representa el nodo raiz en el documento HTML/XHTML
del que descienden todos los demas nodos en el documento (tales como head, body,
div, form, h1, span, input, etc). Dada la sintaxis de HTML/XHTML el nodo html tiene

exactamente dos descendientes: head y body (Dean, 2019).

head es el encabezado del documento HTML/XHTML, contiene meta-informacién del
documento como: la codificacidn de su contenido (por ejemplo UTF-8), las hojas de
estilo que definen su presentacion y los scripts que gestionan el documento y su
interaccion con el usuario. Por su parte body es la etiqueta cuyos descendientes son el

contenido del documento y representan una vista Web (Dean, 2019).

<!DOCTYPE html>
<html lang="es” >
<head >
<meta charset="utf-8" >
<title >
Texto que aparece en la pestafa o encabezado del navegador
</title>
</head>
<body >
<hl >Título que se muestra al usuario</hl>
<p>Párrafo de texto.</p>
<!-- Comentario HTML/XHTML -->
</body>
</html>

95

20.2. Manipulacién de vistas Web en tiempo de ejecucion

Mediante JavaScript es posible explorar el arbol DOM que modela un documento
HTML/XHTML a partir de su nodo raiz (document), también es posible modificar su
contenido, los cambios suelen tener efecto de manera inmediata en la interfaz del
navegador Web (Dean, 2019).

Ejemplo de manipulaciéon de una vista con JavaScript en el navegador
El siguiente script recorre todos los nodos de un arbol DOM generado a partir de
cualquier documento HTML/XHTML (note que la exploracion en este ejemplo es de tipo
a profundidad - Depth First Search DFS) (Crockford, 2008):
function recorreDom(nodo) {

console.log(nodo.nodeName)

nodo = nodo.firstChild

while (nodo) {

recorreDom(nodo)
nodo = nodo.nextSibling

}
}

recorreDom(document)

document es una variable global alcanzable por cualquier script que invoque un
navegador Web. Los atributos que se muestran permiten recorrer el arbol DOM
accediendo a los descendientes directos y posteriormente a sus vecinos (puesto que es
DFS).

Los nodos que representan elementos del documento poseen el atributo nodo.nodeName,
contiene el nombre de la etiqueta HTML/XHTML que representa el elemento DOM
(como head, body, div, form, h1, span, input, etc). En el caso de nodos de contenido
textual, el valor de nodo.nodeName es ”#text”, mientras que los nodos que representan

comentarios tienen como valor *#comment” (Crockford, 2008).

Los elementos DOM ofrecen capacidades de busqueda a partir del valor de sus
identificadores (id="<identificador>”), nombres (name="<nombre>>), clases
(class="<clase>”) o el nombre de la etiqueta en el documento HTML/XHTML con el que

corresponde el elemento (<nombreEtiqueta atributos ... />) (Dean, 2019).

96

El valor de los atributos id de los nodos debe ser unico en el documento, por lo que la
busqueda por id devuelve un uUnico elemento (0 null si no se encuentra ningun
elemento con el id proporcionado). El resto de los métodos de busqueda devuelven una
lista con todos los elementos que tienen el atributo proporcionado (que es vacia si no

hay coincidencias). Estos métodos de busqueda son (Dean, 2019):

e elemento.getElementById(id)
e elemento.getElementsByName(nombre)
e elemento.getElementsByClassName(clase)

e elemento.getElementsByTagName(etiqueta)

Los elementos DOM también contienen atributos que representan los atributos incluidos
en las etiquetas HTML/XHTML.

Ejemplo de manipulaciéon de nodos DOM con JavaScript en el navegador

Considere un campo de entrada de datos como la siguiente:

<input type="text” id="entradaTextual” name="entradaTextual”
maxLength="150" />

En JavaScript es posible acceder a los atributos de un elemento utilizando el operador
de acceso y el nombre del atributo. Tome en cuenta que se distinguen mayusculas de
minusculas por lo que maxlength y maxLength son dos atributos diferentes y solo el ultimo

esta definido en el elemento DOM que representa la etiqueta anterior:

var entradaTextual = document.getElementById(‘entradaTextual’)

console.log(entradaTextual.type) // “text” (String)
console.log(entradaTextual.id) // “entradaTextual” (String)
console.log(entradaTextual.name) // “entradaTextual” (String)
console.log(entradaTextual.maxLength) // 150 (Number)
console.log(entradaTextual.class) // undefined (undefined)

También es posible acceder al contenido textual de un elemento DOM. Para ello se usa
el atributo elemento.innerText. También puede asignar valores a estos atributos, el valor
es reflejado automaticamente en el DOM vy la vista Web. Si se asigna el atributo
elemento.class, podra ver que cambia la presentacion del elemento en la vista

(dependiendo de las clases CSS cargadas por la vista).
97

20.3. Personalizando la presentacion de vistas Web

En la seccion anterior se menciona el atributo class que suele tener una presencia
significativa en documentos HTML/XHTML. Este atributo se relaciona con otro tipo de
dependencias que tiene una vista Web: Hojas de Estilo. Las hojas de estilo suelen ser
archivos CSS (Hojas de estilo en Cascada — Cascading Style Sheet) que definen como

mostrar la vista en el navegador, definiendo su apariencia (Dean, 2019).

Las hojas de estilo se incluyen en las vistas como dependencias que se especifican con

la etiqueta 1ink en el encabezado (head) de un documento HTML/XHTML.:

<IDOCTYPE html>
<html lang="es” >
<head >

<link rel="stylesheet” href="ruta_archivo.css” type="text/css” >
</head>
<body>

</body>
</html>

También es posible definir reglas de estilo dentro del documento HTML/XHTML. Sin
embargo para habilitar modularidad y una mejor organizacién, es recomendado
unicamente incluir estilos dentro de un HTML/XHTML cuando definen reglas especificas
para el documento. Las reglas de estilo se definen en el encabezado del documento
mediante la etiqueta style o usando el atributo style en los elementos de la vista que

requieran alguna regla especifica (Dean, 2019).

<IDOCTYPE html>
<html lang="es” >
<head >

<style >
*A{
text-align: center;
font-weight: bold;
}
</style>
</head>
<body>

<h2 style="text-decoration:underline;background-color:#0f42ba” >
Título secundario

98

</h2>
</body>
</html>

La definicion de una regla se asocia con un selector (Dean, 2019):

e Selector de tipo. Son reglas que se aplican al tipo de elemento HTML/XHTML
con el que deben ser asociadas. Por ejemplo:
div {
width: 50%;

font-style: italic;
¥

e Selector de identificador. Estas reglas se aplican en el elemento que posea el
identificador que define el selector. Estos selectores se caracterizan por iniciar

con el caracter # seguido sin espacios por el valor esperado del id. Por ejemplo:

#nombre-identificador {
font-size: x-large;
border: 1px solid black;

}

e Selector de clase. Este tipo de selector es el que se usa con el atributo class
que aparece en la seccién 20.2. Las reglas que se definen con un selector de
clase unicamente tienen efecto sobre los elementos HTML/XHTML que
explicitamente indiquen la clase en su atributo class. Los elementos pueden
aplicar varias clases CSS en su atributo class, para ello se escriben las clases
separadas por un espacio. Por convencion los nombres de clases de estilo se
definen en minuscula y si incluyen varias palabras, se separan con un guién
medio. Estos selectores se caracterizan por iniciar con el caracter . seguido por

el nombre de la clase. Por ejemplo:

.nombre-clase {
color: blue;
font-family: Impact;
}

e Selector universal. Se aplica sobre todos los elementos del documento

HTML/XHTML. Se define con el comodin *, por ejemplo:

99

* A
line-height: 2;
letter-spacing: 1px;

}

Existen otros tipos de selectores. Los selectores presentados pueden ser especificados
para que tengan efecto sobre un conjunto mas especifico de elementos del documento
HTML/XHTML. En un bloque de definicién de estilos es posible definir varias reglas,
separandolas por ;. Por convencion se prefieren sangrias con 4 espacios cada regla

dentro del bloque y definir una sola regla por linea (Dean, 2019).

También es posible definir reglas dirigidas a varios tipos de elementos, definiendo el
bloque de reglas con varios selectores separados por comas (Dean, 2019), por ejemplo:
.nombre-clase, div, span {

background: #777799;
cursor: progress;

21. Bibliotecas para el desarrollo de vistas Web

21.1. Bibliotecas para vistas del lado del cliente

La manipulacién de elementos DOM mediante el API estandar que ofrecen los
navegadores puede convertirse en una tarea tediosa, en particular debido a que dicho
API puede tener diferencias entre navegadores. Existen varias bibliotecas que ayudan a
abstraer el APl de DOM para el desarrollo de vistas dinamicas con menor esfuerzo. Una

de las bibliotecas mas populares para este proposito es JQuery.

21.2. JQuery — JavaScript para manipulacién de DOM
JQuery comenzé como una utilidad para buscar elementos DOM de manera mas
flexible que los métodos del API estandar getElement[s]By[Id|Name|Class|TagName], de
alli su nombre JavaScript Query. JQuery ha evolucionado para incorporar una serie de
funcionalidades basadas en envolver elementos DOM en un objeto especial llamado
selector que permite manipular el elemento sin importar el navegador, simplificando
también la gestibn de eventos y cambios de estado del documento HTML/XHTML
(Resig, 2005).

100

Los selectores de JQuery emplean un caché que optimiza la exploracion y manipulacién
del documento HTML/XHTML, cuando se usa apropiadamente este caché evita
impactos negativos en el tiempo de ejecucion e incluso puede mejorar el desempeiio de

las vistas Web.

21.2.1. Importando JQuery como dependencia de las vistas Web

Aunque en general la disponibilidad de los servidores de JQuery es confiable, es
recomendado que cualquier dependencia de una aplicacion Web sea instalada en los
servidores que la ejecutan. Por lo anterior el primer paso para usar JQuery es
descargarlo, prefiriendo la versidbn mas reciente durante el desarrollo o0 mantenimiento

de la aplicacién Web en cuestion.

En la pagina de descarga de JQuery se hospedan variantes de cada version lanzada,
para usar JQuery como dependencia se recomienda usar la distribucion comprimida de
produccion, pues son versiones de lanzamiento de tamano reducido que mejoran el

desempeno de la carga de las vistas en que se usan.

https://jguery.com/download/

Una vez que instale el archivo jquery-x.x.x.[min.]js en un directorio publico del servidor
Web, se importa en las vistas que lo requieran mediante el encabezado del documento

HTML/XHTML, de manera similar a como se importan WebSockets en el tema 18.5:

<html>
<head>

zécript src="/js/jquery/jquery-x.x.x.js” ></script>
</head>
</H£m1>
Una vez que el documento importe JQuery, todos los scripts que se definan en el resto
del encabezado o en el cuerpo del documento HTML/XHTML pueden hacer uso de la

variable global $ que expone el APl de JQuery, permitiendo explotar sus

funcionalidades.

101

https://jquery.com/download/

21.2.2. Selectores — Objetos JQuery

El uso de JQuery se basa en envolver elementos DOM en objetos selectores,

recopilando los elementos DOM en un objeto similar a un arreglo. Por ejemplo puede

envolver elementos DOM con los siguientes selectores (js.foundation, 2023a):

<script >
var selectorId = $(‘#un-identificador’)
var selectorTipo = $(‘h1’) // hl es un tipo de elemento HTML/XHTML
var selectorClase = $(‘.nombre-clase-css”’)
var selectorAtributo = $(‘[name="usuario”]’)
var selectorCombinado = $(‘div.clase-esperada-de-los-div’)
</script>

Los selectores anteriores producen los siguientes resultados (js.foundation, 2023a):

selectorId — El selector por identificador se caracteriza por iniciar con el caracter
#. El resultado contiene uno o ningun elemento DOM cuyo atributo id
corresponde con el resto de la cadena provisto al identificador después del

prefijo #.

Este selector es equivalente a usar la funcibn estandar

document.getElementById(id) (vea la seccion 20.2).

selectorTipo — El selector de tipo se caracteriza por contener el nombre de una
etiqueta en el documento HTML/XHTML. El resultado contiene todos los
elementos DOM cuya etiqueta HTML/XHTML corresponde con la cadena del

selector.

Este selector es equivalente a usar la funcibn estandar

document.getElementsByTagName(etiqueta) (vea la seccion 20.2).

selectorClase — El selector de clase inicia con el caracter .. El resultado contiene
los elementos DOM cuyo atributo class corresponde con el nombre de clase CSS

indicada en el selector.

Este selector es equivalente a usar la funcibn estandar

document .getElementsByClassName(clase) (vea la seccion 20.2).

102

e selectorAtributo — El selector de atributo se expresa entre corchetes cuadrados
como una relacion [atributo=valor]. El resultado contiene todos los elementos

DOM que contengan el atributo y valor especificados en el selector.

No existe una funcién de busqueda estandar en el APl DOM equivalente a este
selector, la mas cercana es document.getElementsByName(nombre) pero solo cuando

el atributo de seleccidn es name (vea la seccion 20.2).

® selectorCombinado — Es posible combinar selectores de JQuery. En el ejemplo
anterior se combina el selector de tipo con el de clase, de manera que JQuery
primero buscara los elementos con la etiqueta HTML/XHTML especificada (en
este caso <«div />)y los filtrara dependiendo si poseen la clase especificada en el

selector 0 no (en este caso ‘clase-esperada-de-los-div’).

Existen otros tipos de selectores, variantes de algunos de los presentados (en particular
existen muchas variantes del selector de atributo) y combinaciones de ellos. Es
recomendado utilizar los selectores mas especificos para cada caso de uso, evitando
obtener elementos DOM inesperados y mejorando el desempefio de los selectores
(js.foundation, 2023a).

Los objetos selectores devueltos permiten manipular los elementos DOM de manera
individual o grupal. Es posible actualizar todos los elementos en el selector en una sola
operacion manipulando el selector como si fuera un uUnico elemento DOM. Esto
simplifica la manipulacion del documento HTML/XHTML, en muchos casos es mas

eficiente que usar el API DOM estandar del navegador (js.foundation, 2023a).

Para manipular los atributos de los elementos DOM, los métodos de un selector JQuery

ofrecen dos comportamientos:

e Si no reciben parametros, se comportan como una consulta (getter) y devuelven

el valor del atributo del elemento DOM con el que corresponde el método.

e Si recibe parametros, se comporta como un modificador (setter) del atributo del

elemento DOM.
103

Ejemplo de manipulaciéon de presentacion de vistas con JQuery

<script >
// Se accede al tipo del atributo.
// Si no tuviera un atributo type, devuelve undefined
let tipo = selector.attr(‘type’)
// También puede usar attr() para leer las clases CSS actuales, almacenarlas
// como cadena de texto, agregar otra separada con un espacio y finalmente usar
// attr() nuevamente para agregar la clase nueva, o simplemente puede usar:
selector.addClass(“clase-css-nueva’)
// define una longitud maxima de contenido de 150 caracteres
selector.attr(‘maxLength’, 150)

</script>

Los selectores de JQuery también permiten explorar el arbol DOM que modela el
documento HTML/XHTML y hacer modificaciones en él. Por ejemplo, la siguiente
funcion recorre el arbol DOM de la misma manera que la presentada en el tema 20.2

usando JQuery:

function recorreDomJquery(selector) {
console.log(selector.prop(“tagName’))
selector = selector.children().first()
while (selector.length) {
recorreDomJquery(selector)
selector = selector.next()

}
}

recorreDomJquery ($(document))

Note que en esta funcidén se construye un selector de manera directa proporcionando
un elemento DOM a $, en este caso el nodo global document. Puede envolver cualquier

elemento en un selector para operarlo como un objeto de JQuery.
$(elementoDOM)

21.3. Bibliotecas para vistas del lado del servidor

En la seccion 19 se presenta como construir controladores y middleware que generan
una respuesta a las peticiones del cliente con las funciones
Express.Response.send(string) Y Express.Response.json(Object). Aunque es posible usar
estas funciones para enviar texto que represente documentos HTML/XHTML con las
vistas de la aplicacién, existen bibliotecas que nos permiten organizar, generalizar y

producir vistas de manera eficiente.

104

21.4. Plantillas de JavaScript embebido

ejs (embedded JavaScript templates) es una biblioteca para generar vistas conforme al
sistema de vistas de Express. Permite definir vistas en archivos independientes,
agrupandolas como el resto de los componentes de una aplicacion NodeJS/Express
(Eernisse, 2023a).

Estas plantillas de vistas usan la extensién de nombre de archivo .ejs. La generacion
de vistas con gjs ofrece una forma de trabajo muy similar a la de otros marcos de

trabajo para la Web (Eernisse, 2023a).

Para agregar ejs a un proyecto, primero se debe instalar con npm:
npm install ejs

Lo siguiente es configurar la aplicacién NodeJS/Express para que genere vistas con gjs.

Esto se hace modificando el archivo server.js con el siguiente contenido resaltado:

const ejs = require('ejs"')
const app = express()

app.set('view engine', 'ejs')
app.set('views', './vistas')

En la primera linea se importa la dependencia gjs. Después de instanciar la aplicacion,
se indica que el motor de vistas es gjs y finalmente se especifica el directorio donde
Express debe buscar las vistas. En este caso se usa el directorio “vistas”, localizado en
el directorio principal del proyecto (el mismo que contiene a server. js, tal como sugiere

la ruta del directorio en la configuracion del ejemplo) (Eernisse, 2023b).

21.4.1. Definiendo vistas en archivos .ejs

Los archivos de plantillas de vistas .ejs se interpretan como contenido HTML/XHTML
salvo que se indique lo contrario mediante bloques de cédigo JavaScript. Por ejemplo
es posible generar una tabla desde codigo sin que sea necesario definir su estructura
HTML/XHTML por completo. Mas adelante en la seccion 21.4.3 se presenta como

generar vistas dinamicas en tiempo de ejecucion (Eernisse, 2023b).

105

Ejemplo de vista ejs

./vistas/index.ejs

<!DOCTYPE html>
<html lang="es" >
<head >
<meta charset="utf-8">
<title>Portal - Aplicacidn de ejemplo de NodelS CIDW</title>
</head>
<body>
<div >
<p>
<%= "iMira mama, estoy en la Web!' %>
</p>
</div>
</body>
</html>

En la vista del ejemplo anterior se define una pantalla cuyo unico contenido es un
parrafo de texto. Sin embargo este texto no es una parte estatica de la vista, esta
siendo generado como una cadena de JavaScript que se agrega como el contenido del

parrafo al interpretar el archivo .ejs.

Para enviar una vista al usuario se emplea el método Express.Response.render(string,
object). Por ejemplo, para emplear la vista anterior como portal principal en una
aplicacion, se modifica la respuesta del ruteador asociada a la ruta principal / para

devolver la vista del ejemplo (StrongLoop et al., 2017):

./rutas/web.js

const router = express.Router()
router.get('/', (peticion, respuesta) => {

respuesta.render('index")
)
Note que no se incluye el nombre del directorio vistas ni la extension del archivo .ejs,
sino que unicamente se indica el nombre de archivo index. Esto es porque en la
configuracion establecida en el archivo server.js en la seccion 21.4, se ha especificado

que las vistas estan contenidas en el directorio ./vistas, NodeJS automaticamente

106

busca las vistas en él y no es necesario incluirlo en el nombre de la vista a importar, al

igual que la extension del archivo .ejs (StrongLoop et al., 2017).

Observe también que se omite el segundo parametro de render(string, object). Esto
es porque el segundo parametro se usa para pasar informacion a la vista, como se
presenta en la seccién 21.4.3. El contenido de la vista del ejemplo no depende del
estado del servidor ni de la peticion, no utiliza parametros. En estos casos es posible

omitir el segundo parametro de la funcidn render.

21.4.2. Creando plantillas para las vistas

La generacion de vistas puede depender de varios archivos .ejs que pueden definir
partes especificas de las vistas. Esto suele aprovecharse para definir plantillas de
elementos comunes en las aplicaciones, por ejemplo, encabezados y pies de pagina

que deben aparecer en todas las pantallas (Eernisse, 2023b).

De esta manera no es necesario reescribir cédigo, eliminando también el riesgo de
introducir inconsistencias al tener que realizar cambios uniformes en la presentacion de

las aplicaciones (Eernisse, 2023b).

Ejemplo de plantilla para crear un pie de pagina estandarizado

./vistas/comunes/pie_pagina.ejs

<footer >
<hr>
<div >
<p>Aplicacién de ejemplo de NodelS CIDW</p>
</div>
</footer>

Para emplearlo en una vista, por ejemplo el portal definido en la seccion anterior, se usa
el siguiente bloque resaltado dentro del archivo .ejs, en este caso ./vistas/index.ejs

del ejemplo anterior:

<%= "iMira mama, estoy en la Web!' %>
</p>
</div>
<%- include('comunes/pie_pagina') %>
</body>

107

</html>

21.4.3. Creando vistas dinamicas

La presentacion de las vistas de las aplicaciones puede variar dependiendo del estado

del servidor y/o de las peticiones del usuario. Mediante codigo JavaScript en las vistas

ejs pueden usarse variables para parametrizar y personalizar su presentacion

(Eernisse, 2023b).

Ejemplo de vista dinamica con contenido que depende del estado de un modelo

Retomando los controladores de ejemplo desarrollados en la seccion 19.2, se define

una vista que muestra una tabla con los datos de los usuarios que maneja la aplicacion

del ejemplo:

./vistas/usuario.ejs

<%- include(‘comunes/encabezado_html’) %>
<title>
Detalle del usuario <%= usuario.obtenerId() %>
- Aplicacidén de ejemplo de NodelS CIDW
</title>
</head>
<body>
<div >
<table>
<thead>
<tr>
<th>ID</th>
<th>Nombre</th>
<th>Apellido</th>
</tr>
</thead>
<tbody>
<tr>
<td><%= usuario.obtenerId() %></td>
<td><%= usuario.obtenerNombre() %></td>
<td><%= usuario.obtenerApellido() %></td>
</tr>
</tbody>
</table>
</div>
<%- include('comunes/pie pagina') %>
</body>
</html>

108

Los datos son provistos a la vista mediante el controlador. Retomando nuevamente el
ejemplo anterior, la respuesta que genera el controlador se construye de la siguiente

manera:

./controladores/usuario.js

obtenerUsuario: (peticion, respuesta) => {
if (lusuarios[peticion.params.id]) {
// envia el error 404 - Usuario no encontrado

}

let usr = usuarios[peticion.params.id]
respuesta.render('usuario’, {usuario: usr})

}
}

22. Peticiones AJAX

22.1. JavaScript asincrono con XML

AJAX (Asynchronous JavaScript with eXtensible Markup Language) es una
combinacion de tecnologias Web que permite realizar peticiones en segundo plano y
actualizar el estado de una vista con el resultado de la peticidon. Las peticiones AJAX se
basan en el objeto XMLHttpRequest, es un objeto global que permite hacer conexiones
con un servidor y procesar la respuesta en la misma vista donde se generd la peticion
(Mozilla Corportation, 2022).

Pese al nombre de la peticion XMLHttpRequest también puede usarse para realizar
peticiones HTTPS, FTP, lectura de archivos, entre otros; ademas de aceptar

documentos HTML, texto plano, JSON y otros (Mozilla Corportation, 2022).

22.2. Conexiones abiertas y Peticiones discretas

En la seccion 18.5 se explica que es posible abrir conexiones de WebSockets que
permiten tanto al servidor de la aplicacion como a los navegadores de los usuarios que
ejecuten una aplicacion Web adquirir un canal bidireccional de comunicacion en que el

ambos actian como cliente — servidor.

La desventaja de mantener canales de WebSockets abiertos es que requieren mas

recursos que otro tipo de conexiones Web. Aunque los servidores usualmente tienen la
109

capacidad de mantener miles o millones de conexiones, muchos usuarios dependen de

entornos con recursos limitados.

Una porcion significativa de los usuarios puede tener conexiones limitadas, sea en
ancho de banda, en costo de trafico o por tiempo de uso, por lo que es recomendado
solo emplear WebSockets cuando es indispensable mantener una conexién abierta
constantemente, por ejemplo si se requiere de una funcién de chat en vivo, o compartir

el estado de recursos en tiempo real.

Para otro tipo de peticiones en segundo plano es mejor emplear peticiones AJAX. Para
esto no es necesario manipular el objeto XMLHttpRequest directamente. Bibliotecas
como JQuery ofrecen herramientas para manejar peticiones asincronas altamente

personalizables.

22.3. Usando AJAX a través de JQuery
En esta seccion se presenta como usar AJAX mediante la aplicacion de ejemplo, en la
que peticiones asincronas crean y eliminan usuarios, exponiendo estos mecanismos a

los usuarios con un formulario y redireccionamientos.

Después de crear el proyecto con npm como se muestra en la seccion 17.4.2, el primer
paso es definir un directorio que pueda ser accedido publicamente desde la Web con
las dependencias de las vistas, en este caso JQuery. Los recursos que conforman las
dependencias y componentes de las vistas de una aplicacion Express/NodedS suelen
colocarse en un directorio llamado public. Se configura en el directorio en el archivo

server.js (StronglLoop et al., 2023):

const app = express()

app.use(express.static(__dirname + '/public'))

Luego se agrega JQuery al repositorio del proyecto como se hace en la seccion 21.2.1,

descargando el archivo https://code.jquery.com/jquery-3.6.4.min.js (o la version de

110

https://code.jquery.com/jquery-3.6.4.min.js

lanzamiento mas reciente disponible) en ./public/js/jquery-x.x.x.min.js (con x.x.x el

namero de la versiéon descargada).

Ejemplo de uso de peticiones AJAX con JQuery para manejar formularios

En este ejemplo se incluye JQuery en el portal de la aplicacion, ./vistas/index.ejs junto
con un formulario que permite crear usuarios usando la ruta POST
/usuarios/:id/:nombre/:apellido. Comenzaremos agregando JQuery a la vista del

portal:

./vistas/index.ejs

<script src="/js/jquery-3.6.4.min.js" ></script>
<title>Portal - Aplicacidén de ejemplo de NodeJS CIDW</title>
</head>

A continuacién se construye el cuerpo del archivo para agregar el formulario que recibe

los siguientes datos de los usuarios: identificador, nombre y apellido.

<body>
<h1>Alta de usuarios</h1>
<form id="datos_usuario” action="#" method="post">
<div >
<label for="identificador_usr" >ID:</label>
<input id="identificador_usr" type="number" name="identificador_usr" >
</div>
<div >
<label for="nombre_usr" >Nombre:</label>
<input id="nombre_usr" type="text" name="nombre_usr" >
</div>
<div >
<label for="apellido usr" >Apellido:</label>
<input id="apellido_usr" type="text" name="apellido_usr" >
</div>
<button type="submit" name="enviar_btn" >Registrar</button>
</form>
<%- include('comunes/pie_pagina') %>

Para enviar el formulario como una peticion AJAX, se usa JQuery para definir la accion
que corresponde al evento de enviar el formulario, sustituyendo el comportamiento por
defecto del evento de envio del formulario. Este comportamiento se define dene dentro
y al final de la vista mediante una etiqueta <script> (js.foundation, 2023b):

<script >
111

$('#tdatos_usuario').submit(function(eventoEnviar) {

eventoEnviar.preventDefault()

let idusr = $('#identificador _usr')

let nombreUsr = $('#nombre_usr')

let apellidoUsr = $('#apellido usr')

let form = $(this)

$.ajax({
type: 'POST',
url: "~ /usuarios/${idUsr.val()}/${nombreUsr.val()}/${apellidoUsr.val()} ,
data: form.serialize(),

Si la peticion obtiene un resultado exitoso, se vacia el formulario para permitir el registro

de otro usuario:

success: function(respuesta) {
idUsr.val('")
nombreUsr.val('")
apellidoUsr.val('")
alert(" Usuario registrado en: "${respuesta}"’)

¥

error: function(ajax, mensaje) {
alert('Ocurrié un problema al registrar al usuario.')

}
)
b

</script>
</body>

Ahora se construye la funcionalidad de borrado de usuarios. Se agrega JQuery y un

formulario a la vista de detalle de usuarios que creada en la seccion 21.4.3:

./vistas/usuario.ejs

<script src="/js/jquery-3.6.4.min.js" ></script>
<title>
Detalle del usuario <%= usuario.obtenerId() %>
- Aplicacion de ejemplo de NodedS CIDW
</title>
</head>

De forma similar a como se hizo en la pagina del Portal, en el caso del borrado se
agrega un boton debajo de la tabla con los datos del usuario que acciona el mecanismo
de borrado. Este comportamiento se define nuevamente en una etiqueta <script> antes

de terminar el cuerpo del HTML.

112

Este <script> muestra una confirmacion para realizar el borrado: si se confirma que
desea borrar al usuario, se envia la peticion DELETE /usuarios/:id. El resultado se
muestra en pantalla, de ser exitoso redirecciona al Portal principal, pues la ruta
asociada al usuario que se acaba de borrar ya no es valida (ahora apunta a un recurso

no existente). De lo contrario, permanece en la pagina.

</tbody>
</table>
<button id="eliminar_usr_btn" type="button" name="eliminar_usr_btn">
Borrar usuario
</button>
</div>
<%- include('comunes/pie_pagina') %>
<script >
$('#eliminar_usr_btn').click(function(eventoClick) {
if (lconfirm('¢Borrar? Esta accidon no puede deshacerse')) return
let botonBorrar = $(this)
botonBorrar.prop('disabled', true)
$.ajax({
type: 'DELETE',
url: "/usuarios/<%= usuario.obtenerId() %>",
success: function(respuesta) {
alert("El usuario "${respuesta}" ha sido eliminado.’)
window.location.href = '/*'
¥
error: function(ajax, mensaje) {
alert('Ocurrié un problema al borrar al usuario.')
botonBorrar.prop('disabled’', false)
}
)
}

</script>
</body>

23. Bootstrap y hojas de estilo CSS

23.1. Jerarquia de aplicacion de selectores de estilos

En la seccion 20.3 se presentan las Hojas de Estilo en Cascada y algunos de los
principales selectores con los que se definen bloques de reglas de estilos, pero no se
profundiza en como se aplican mas alla de los selectores. El sustantivo cascada en el
nombre de las hojas de estilo, refleja la estrategia de aplicacion de las reglas. Esta

estrategia se describe a continuacion (Dean, 2019):

113

1. Las reglas definidas en el atributo style de un elemento del documento
HTML/XHTML son las mas prioritarias, sobreescriben cualquier regla que se

aplique en el elemento conforme a los selectores en la vista.

2. La siguiente prioridad es para las reglas definidas en el encabezado del

documento HTML/XHTML dentro de la etiqueta <style />

3. Por ultimo tenemos las reglas definidas en archivos de estilo que cargue la vista

como dependencias.

Si desea que una regla conserve su efecto pese a su posible sobreescritura por reglas
mas prioritarias, puede terminar la regla con la directiva !important (Mozilla
Corportation, 2023a).

23.1.1. Incluyendo hojas de estilo en las vistas

En la seccién 22.3 se modifica el archivo de configuracidon server.js del proyecto de
ejemplo para definir un directorio con las dependencias y componentes de las vistas
llamado public. Las hojas de estilo también se colocan en él como parte de las
dependencias de las vistas. Por ejemplo, puede personalizar la presentacion del pie de

pagina con el siguiente archivo ./public/css/comunes.css:

footer {
background:1lightgray;

}

Para incluirlo en una vista, se emplea la siguiente etiqueta en el encabezado de los
documentos HTML/XHTML:

<link rel="stylesheet" type="text/css" href="/css/comunes.css">

23.2. Bootstrap

Bootstrap es un conjunto de bibliotecas que ayudan a estilizar la presentacion de las
vistas de una aplicacion con menor esfuerzo. Ofrece marcos de trabajo para desarrollar
aplicaciones o dependencias para documentos HTML/XHTML comprimidos de forma
similar a JQuery (Otto et al., 2023).

114

23.2.1. Integrando Bootstrap en una aplicacion NodeJS
Como se hace con JQuery, se descarga la version con la que se desea trabajar

(usualmente la mas reciente) y se instala en ./public/css/bootstrap.min.css

https://cdn.jsdelivr.net/npm/bootstrap/dist/css/bootstrap.min.css

Muchos componentes de Bootstrap utilizan JavaScript, por lo que también se deben
importar las dependencias JavaScript de Bootstrap. En particular Bootstrap utiliza
JQuery, por lo que es importante primero importar JQuery como dependencia de las

vistas antes que Bootstrap. Los scripts de Bootstrap usualmente se instalan en
./public/js/bootstrap.min.js

https://cdn.jsdelivr.net/npm/bootstrap/dist/js/bootstrap.min.js

Tras lo anterior es posible importar Bootstrap como dependencia en las vistas usando la

etiqueta 1ink en el encabezado del documento HTML/XHTML.

<html >
<head >

<link rel="stylesheet" type="text/css" href="/css/bootstrap.min.css">
<script src="/js/jquery-x.x.x.min.js" ></script>

</head>

Los scripts de Bootstrap deben cargarse al final del cuerpo del documento
HTML/XHTML, de esta forma todos sus componentes estan definidos para cuando se
ejecuta Bootstrap y las animaciones asociadas a los estilos seran enlazadas de forma
adecuada (Otto et al., 2023):

<script src="/js/bootstrap.min.js" ></script>
</body>

</html>

115

https://cdn.jsdelivr.net/npm/bootstrap/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap/dist/js/bootstrap.min.js

23.2.2. Personalizando vistas con Bootstrap

Ejemplo de uso de Bootstrap para uniformar y estilizar la presentacién de vistas

Para terminar la aplicacion de ejemplo se da estilo a las vistas del Portal principal y de
Detalle de usuario. Comenzando por el Portal principal ./vistas/index.ejs se le da el
estilo de Bootstrap al formulario para crear usuarios modificando las etiquetas de las

entradas del formulario, especificando clases de Bootstrap:

<form id="datos_usuario" action="#" method="post">
<div class="form-group” >
<label for="identificador_usr" >...</label>
<input id="identificador_usr" ... class="form-control" >
</div>
<div class="form-group" >
<label for="nombre_usr" >...</label>
<input id="nombre_usr" ... class="form-control" >
</div>
<div class="form-group" >
<label for="apellido_usr" >...</label>

<input id="apellido_usr" ... class="form-control" >
</div>
<button type="submit" ... class="btn btn-success" >...</button>
</form>

En el caso de la vista de Detalle de usuario ./vistas/usuario.ejs, se le da estilo a la
tabla que presenta la informacién del usuario y el botéon que solicita el borrado del
usuario:
<div >
<table class="table table-bordered table-hover" >
<thead class="thead-light" >

</thread>

</table>
<button id="eliminar_usr_btn" ... class="btn btn-danger" >...</button>

116

Agradecimientos

Trabajo realizado con el apoyo del Programa PAPIME PE109623 El Aula del Futuro
del Colegio de Ciencias y Humanidades Plantel Sur y PAPIME PE309523 EIl Aula

del Futuro del Colegio de Ciencias y Humanidades Plantel Oriente.

117

Referencias Bibliograficas

Bass, L., Clements, P., Kazman, R., 2013. Software architecture in practice, 3rd ed. ed,
SEl series in software engineering. Addison-Wesley, Upper Saddle River, NJ.

Bernsen, N.O., Dybkjaer, L., 2009. Multimodal usability, Human-computer interaction
series. Springer.

Bourque, P., Fairley, R.E., Society, I.C., 2014. Guide to the Software Engineering Body
of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed. IEEE Computer Society Press,
Washington, DC, USA.

Chacon, S., Straub, B., 2020. Pro Git, 2nd ed. Apress.

Clements, P., Bachmann, F., Bass, L., Garlan, D., lvers, J., Little, R., Merson, P., Nord,
R., Stafford, J., 2011. Documenting software architectures: views and beyond,
2nd ed. ed, SEI series in software engineering. Addison-Wesley, Upper Saddle
River, NJ.

Crockford, D., 2019. Code Conventions for the JavaScript Programming Language
[WWW Document]. URL https://www.crockford.com/code.html (accedido
28.04.23).

Crockford, D., 2008. JavaScript: the good parts, 1. ed. ed, Unearthing the excellence in
JavaScript. O'Reilly, Beijing KoIn.

Dean, J., 2019. Web programming with HTMLS5, CSS, and JavaScript. Jones & Bartlett
Learning, Burlington, Massachusetts.

DelBono, E., 2016. Node.js Succinctly.

Dix, A., Finlay, J., Abowd, G.D., Beale, R., 2004. Human-computer interaction, 3rd ed.
Pearson/Prentice-Hall, Harlow, England; New York.

Eernisse, M., 2023a. ejs [Www Document]. npm. URL
https://www.npmjs.com/package/ejs (accessed 3.18.23).

Eernisse, M., 2023b. EJS -- Embedded JavaScript templates [WWW Document]. URL
https://ejs.co/ (accedido 04.05.23).

118

Flanagan, D., 2011. JavaScript: the definitive guide, 6th ed. ed. O’Reilly, Beijing;
Sebastopol, CA.

Fowler, M., 2003. Patterns of enterprise application architecture, The Addison-Wesley
signature series. Addison-Wesley, Boston.

Gabbrielli, M., Martini, S., 2010. Programming languages: principles and paradigms,
Undergraduate topics in computer science. Springer, London ; New York.

Hamerly, J., Paquin, T., Walton, S., 1999. Freeing the Source: The Story of Mozilla, in:
DiBona, C., Ockman, S. (Eds.), Open Sources: Voices from the Open Source
Revolution. O’Reilly, California.

js.foundation, 2023a. Selectors | jQuery APl Documentation. URL
http://api.jquery.com/category/selectors/ (accedido 17.03.23).

js.foundation, 2023b. jQuery.ajax() | jQuery APl Documentation. URL
https://api.jquery.com/Jquery.ajax/ (accedido 04.05.23).

Kurose, J.F., Ross, K.W., 2013. Computer networking: a top-down approach, 6th ed. ed.
Pearson, Boston.

Luzgin, V.A., Kholod, I.I., 2020. Overview of Mining Software Repositories, in: 2020
IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus). pp. 400-404.

Martin, R.C., 2008. Clean Code: A Handbook of Agile Software Craftsmanship, 1st ed.
Prentice Hall PTR, USA.

Martin, R.C., Martin, M., 2007. Agile principles, patterns, and practices in C#, Robert C.
Martin series. Prentice Hall, Upper Saddle River, NJ.

McConnell, S., 2004. Code complete, 2nd ed. ed. Microsoft Press, Redmond, Wash.

Mozilla Corportation, 2022. AJAX - Guia de Desarrollo Web | MDN [WWW Document].
URL https://developer.mozilla.org/es/docs/Web/Guide/AJAX (accedido 04.05.23).

Mozilla Corportation, 2023a. limportant - CSS: Cascading Style Sheets | MDN [WWW
Document]. URL https://developer.mozilla.org/en-US/docs/Web/CSS/important
(accedido 04.05.23).

119

Mozilla Corportation. 2023b. Arrow function expressions—JavaScript | MDN [WWW
Document]. URL
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Ar
row_functions (accedido 03.06.24)

Nielsen, J., 1994. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Nottingham, M., 2020. URI Design and Ownership (Request for Comments No. RFC
8820). Internet Engineering Task Force. https://doi.org/10.17487/RFC8820

Otto, M., Thornton, J., Bootstrap, 2023. Get started with Bootstrap [WWW Document].
URL https://getbootstrap.com/docs/5.3/getting-started/introduction/ (accedido
04.05.23).

Pratt, A., Nunes, J., 2012. Interactive design: an introduction to the theory and
application of user-centered design. Rockport Publishers, Beverly, MA.

Resig, J., 2005. Selectors in Javascript. URL
https://johnresig.com/blog/selectors-in-javascript/ (accedido 17.03.23).

Sommerville, 1., 2011. Software engineering. Addison-Wesley, Boston.

StrongLoop, IBM Corporation, OpendS Foundation, 2023. Serving static files in Express
[WWW Document]. URL https://expressjs.com/en/starter/static-files.html
(accedido 04.05.23).

StrongLoop, IBM Corporation, OpendS Foundation, 2017. Using template engines with
Express [WWW Document]. URL
http://expressjs.com/en/guide/using-template-engines.html (accedido 04.05.23).

Torvalds, L., 2005a. Re: Kernel SCM saga. [WWW Document]. URL
https://marc.info/?I=linux-kernel&m=111300303827338&w=2 (accedido 02.05.23).

Torvalds, L., 2005b. Re: Kernel SCM saga. [WWW Document]. URL
https://marc.info/?I=linux-kernel&m=111298705212803&w=2 (accedido 02.05.23).

Torvalds, L., 2005c. Re: Kernel SCM saga. [WWW Document]. URL
https://marc.info/?I=linux-kernel&m=111289606218373&w=2 (accedido 02.05.23).

120

Torvalds, L., 2005d. Re: Kernel SCM saga. [WWW Document]. URL
https://marc.info/?I=linux-kernel&m=111293537202443&w=2 (accedido 02.05.23).

121

